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Abstract

Data fusion and decision fusion classification strategies are introduced to predict dyslexia from multi-channei event related
potentials (ERPs) recorded, at birth, in response to multiple stimuli. Two data and two decision fusion strategies are developed
in conjunction with nearest-mean classification rank selection to classify multi-stimuli multi-channel (MSMC) ERPs. The
fusion vector in the data fusion strategy is formed by directly combining the rank-ordered MSMC ERP vectors or the rank-
ordered elements of the MSMC ERPS. The resulting fusion vector is classified using a vector nearest-mean classifier. The
nearest-mean classification decisions of the rank-ordered MSMC ERP vectors or the rank-ordered MSMC ERP elements are
combined into a fusion vector in the decision fusion strategy. The resulting decision fusion vector is classified using a discrete
Bayes classifier. The MSMC fusion classification strategies are tested on the averaged ERPs recorded at birth of 48 children:
17 identified as dyslexic readers, 7 as poor readers, and 24 identified as normal readers at 8 years of age. The ERPs were
recorded at 6 electrode sites in response to two speech sounds and two non-speech sounds. It is shown that through the
MSMC ERFP element decision fusion strategy, dyslexic readers and poor readers can be predicted with almost 100% accuracy.
Consequently, future reading problems can be detected early using neonatal responses making it possible 1o introduce more
effective interventions earlier to children with reading problems emerging later in their lives. Furthermore, it is noted that
because of the generalized formulations, the fusion strategies introduced can be applied, in general, to problems involving the
classification of multi-category multi-sensor signals.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction very high accuracies. In a previous study on 48 children [1],

it was shown that amplitude and latency measures of three

The aim of this investigation is to show, through data
and decision fusion classification strategies, that information
from multi-stimuli event related potentials (ERPs) recorded
at birth from multiple channels can predict dyslexia with
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F£-mail address: 1gopta@siv.edu (L. Gupta).

auditory ERP components recorded at birth discriminated
with 81.25% accuracy among three groups of children iden-
tified as normal, poor, or dyslexic readers based on reading
and 1Q scores obtained at 8 years of age. The significance
of these results is that dyslexia can be detected early us-
ing neonatal ERPs. Consequently, early and more effective
interventions can be provided to children before they enter
school and thus improve their ability to learn. The ERPs
were recorded from six scalp electrodes (FL, FR, T3,T4, PL,
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Fig. 1. Classification of each MSMC ERP type.

PR) te four stimuli consisting of two speech (/bi/ and /gi/)
and two non-speech sounds (/nbi/ and /ngi/). Each child was
represented by 24 (6 channels x 4 stimuli) averaged ERPs,
that is. one averaged ERP for each stimulus—channel com-
bination. Each ERP consisted of 200 data points, sampled
at 5ms intervals and collected sequentially over a 1 s period
beginning at stimulus onset. The first 13 samples and the last
47 samples were dropped and the remaining 140 point signal
was down-sampled by a factor of 2 1o facilitate discriminant
analysis. Each ERP, therefore, consisted of 70 samples. The
six ERP features selected for discriminant analysis classifi-
cation consisted of (a} the first large negative peak (N1) la-
tency to the speech syllable /gi/ recorded at FL; (b) the first
large negative peak (N1) latency to the speech syllable /gif
recorded at PL; (c) the first large negative peak (N1} latency
to the speech syllable /gi/ recorded at T4; (d) the second large
negative peak (N2) amplitude that differed between the two
groups in response to the /gi/ speech syllable at FR; (e) the
(N1) amplitude change recorded at T4, in response to /nbif;
and (f) the second large positive peak amplitude (P2) elicited
inresponse to /bi/ at PR. Details regarding the suhjects, stim-
uli, ERP procedures, and results of the study can be found
in Ref. [2].

Given the complexity of the problem, the classification
results reported in the previous study are quite impressive.
However, even higher classification accuracies with lower
false positives are desired in practice. The specific goal in
this paper, therefore, is to improve the classification per-
formance using exactly the same averaged data used in the
previous study. In this investigation, the 48 children were
first divided into two categories consisting of 24 normal
readers and 24 poor readers (dyslexics and poor readers
combined) and next, into three categories (24 normal read-
ers, 17 dyslexic readers, and 7 poor readers). Given the
small number of ERPs with respect to the dimension of the
ERP vector, it is clearly not possible to design paramet-
ric classifiers that depend on second-order statistics. This

limits the choice of parametric classifiers to those that
depend only on the first-order statistics. Given this lim-
itation, the nearest-mean parametric classifier is selected
because the mean representing each category can be esti-
mated from the training sets using either the “leave-one-out
methed” or the “random equi-partition training and testing
method [1].” Two multi-stimuli muiti-channel (MSMC)
data fusion and two decision fusion strategies are introduced
in conjunction with nearest-mean classifiers. In the both
fusion strategies. the MSMC ERP vectors or the MSMC
ERP elements are first ranked according to their individual
Euclidean nearest-mean classification accuracies. In the
data fusion strategies, the vectors or elements are selected
according to their rank and fused into a data fusion vector.
The resulting data fusion vector is classified using a vector
Euclidean nearest-mean classifier. In the decision fusion
strategies, the vectors or elements in the data fusion vector
are classified independently using the Euclidean nearest-
mean classifier and the decisions are fused into a single
decision fusion vector. The decision fusion vector is classi-
fied using a discrete Bayes classifier. The formulations of
the strategies are quite general and are not limited by the
number of ERP categories, channels, or stimuli. The strate-
gies are tested on the same data used in Ref. [2] and the
results are presented in terms of the classification decision
probabilities and the corresponding posterior probabilities,
The performance is compared with the results reported
in Ref. [2] and also with the nearest mean classification
results of the single best stimulus and channel combination.
In studies involving multiple channels and multiple stimuli,
it is important to determine which channels, which stimuli,
and which channel-stimuli give the best discriminatory
information, therefore, a ranking strategy derived from the
nearest-mean classification accuracies of the MSMC ERPs
is first introduced. Ranking is also used to rank and select
MSMC ERP vectors and MSMC ERP elements in the four
fusion strategies.
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2. Channel-stimulus, stimulus, and channel ranking

In the gencralized multi-category formulations to follow,
Zsym represents the K -dimensional averaged ERP elicited
by external stimulus s, s=1,2..... S.atchannel m, m=
1.2,.... M, where § and M are the number of stimuli and
channels. respectively. An averaged ERP elicited by exter-
nal stimulus s at channel m given the category is ¢, ¢ =
L.2..... C, is represented by Z; . where C is the to-
tal number of categories. The number of different types of
MSMC ERPs in each category is, therefore (S x M).

The nearest-mean classifier is developed for each ERP
type as shown in Fig. 1. The notation {} in the figure is
used to represent the entire collection. Therefore, {5} is the
entire set of § stimuli and {Zy, .} is the entire sel of (§ x
M) MSMC ERPs. The Euclidean norm nearest-mean vector
discriminant function for category ¢, is given by

g(‘:x/m(zsfm }= (ZL‘,,,)(Z.s‘/:rz/{:)

= 022 1) o m e (1)
where Z‘v/m/‘. is the mean of the c-category ERPs of channel
m in response (o stimulus 5. A test ERP Zg,y,, is assigned to

the discriminant function that yields the highest value. That
is, the test MSMC ERP Z;,,, is assigned to the category

ime Cym € ). given by
c:f/m = arg m{i}’([gc:.\'/m(.zs/m)I- (2)

The classification accuracy of the classifier for each ERP
type can be determined from the probability of classification
error which is given by

C
Psymie) = Z Peymle/c)Pe. (3

c=1

where Py (e/¢) is the probability of misclassifying Z s,
when the true category of Z, p, is ¢ and P, is the a priori
probability of category c. The classification accuracy of the
classifier for Z; ;. expressed as a percentage, is given by

s/ =[1- Ps/m(a)l x 100%. 4)

The (S x M) MSMC ERP classifiers can be ranked according
to their respective classification accuracies [3], Furthermore,
the stimuli and channels can be ranked individually using
the ranks of the marginal rank-sums. The marginal rank-
sums Ry and Qm of the stimuli and of the channels are
given, respectively, by

_ M

Rs = Z Rs‘/.’n- &)
=1

N 5

Om =Y Ryjms (6)

s=1

where R, /., is the rank (1 =highest classification accuracy,
§ x M = lowest classification accuracy) of the classifier
for ERP Zsim- The ranks R; and R,, of the stimuli and
channel are given by the ranks of the rank-sums, ﬁ'_,- and
Q. Tespectively.

3. MSMC vector data fusion

It is of interest to determine the classification accuracies
that can be expected through different channel-stimuli com-
binations. Therefore, the goal in this section is to determine
the classification performance as a function of the number
of MSMC ERPs. The (S x M) ERPs can clearly be com-
bined in numerous ways. To simplify the selection of the
combinations, the MSMC ERPs can be systematically com-
bined using the rankings established in the previous section.
That is, let R, /p, be the rank of Zy,,, and let

zj = Z.s'/m if R.\'/m =j. (7

As a result of (he ranking. Z; is ordered such that Z ts
the MSMC ERP vector yielding the highest classification
accuracy and Z s, 5y is the MSMC ERP yielding the lowest
classification accuracy. Let {/; be the data tusion vector
formed according to

Up= v Zj, (8)

where V represents the concatenation operation. That is,
the fusion vector Uy = (Z1.2Z3, ..., ZL)T is formed by
concatenating the ERP vectors with the first L ranks to form
a vector of dimension (L. x K). Using {/;, the Euclidean-
norm nearest-mean vector discriminant function for category
¢ is given by

e Wiy = WU OLse) = 2O, WL pe). )

where UL/C is the mean of the fusion vectors of category
. A test fusion vector Uy s assigned to the category ],
¢} € {c}. given by

¢} = argmaxlge, 1. (ULl (10)

The MSMC vector data fusion strategy is summarized in
Fig. 2.

4. MSMC vector decision fusion

An alternative to data fusion is decision fusion in which
the decisions of individual classifiers are combined to decide
the category of a test pattern (see Fig. 3). As in the previous
section, let

Zi=Zym i Rym=1J (11)
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Fig. 2. The MSMC vector data fusion strategy.
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Fig. 3. The MSMC vector decision fusion strategy.

and let
¢ =arg max[ge: j(Z )1, (12)
where
s 2 = 2D - 12 ENZ) @

is the ncarest-mean vector discriminant function for category
¢ and Z; is the mean of Z; belonging to category <. In
order to fuse the decisions, let

dj =} (14)

and let

D= ¥ d;. (15)
j=1

That is. Dy =(dy, da. . ... dp )T is the fusion vector formed

by concatenating the decisions of the MSMC ERP vector
classifiers with the first L ranks. The decision fusion vector
D; 1s a discrete random vector in which cach element can
take one of € values. Let the PDF of Dy under category ¢
be P(Dy /c)y and P be the a priori probability of category
¢, then, the Bayes decision function for category ¢ is

Le(DpY= P P(Dy fo) (16}

which can also be writlen as

gD =In P+ 1In P(Dyjc). an
The final decision c¢}. ¢} € [}, resulting from decision
fusion is given by

¢; =argmaxlge(DL)]. (18)
The discriminant function for the C-category case can be
derived explicitly by letting

Pjaje=Pldj=afc), j=12,..., L (19
That is, p; 4. is the probability that d; =a, ¢ € {c}, when
the true category is ¢. The probability density function {PDF)
of d; under category ¢ can be wrilten as

Pld;je)=(pj1)° 4 Vpja)2di=D

X (PJ.C/f)‘S(‘U*C). (20)
Because the classifiers are developed independently for each
MSMC ERP type, we assume that the decisions of the

MSMC ERP classifiers are independent, therefore, the PDF



2178 H. Kook et al. / Pattern Recognition 38 (2005) 2174-2184

of Dy, under the category ¢ can be written as

L
P(D; /c)y= l_I (pj‘]/c)ﬁ(d,‘—l)(pjl/c)a(dj,g) o

j=1

x (pj.cpe)? 40, @1
where

1 if x=a,
5”‘_‘”‘{0 if x # a. @2

By substituting the PDFs into Eq. (17}, it can be shown that
the discriminant function for category ¢ can be written as

L
ge(Dp) =Y 18d; — D In(p; 1 50) + 3(d; — D In(pj2se)
i=1
++0Wd; = O lnipj i)l +InPe. (23)

5. MSMC element data fusion

In this data fusion strategy, the fusion vector is formed by
combining selected elements of MSMC ERPs. The fusion
vector Z is formed by first concatenating all MSMC ERPs
into a vector of dimension (§ x M x K). That is

5 M
Z=Y YV Zym (24)
s=lm=1

Let 2(f). j=1,2,...,(8§ x M x K}, be the jth element
of Z and d; = ¢¥, c;‘f € {c}, where,

J
¢} = arg maxlge (2(/))) (25)
and
ge(2()) = 2(HNZe (i) — 1/DIZ )P (26)

is the nearest-mean discriminant function for category ¢ and
Z¢(J) is the mean of z(j) under category c. Let a; be the
classification accuracy of the nearest-mean scalar classifier
for element z(j) and let R be the rank of z({;j) according
to the classification accuracies, Let

u(fy=z(k) if Ry = j. (27)

As a result of the ranking, u(l) is the element yielding the
highest classification accuracy and u(M x § x K) is the
element yielding the lowest classification accuracy. Let Uy
be the data fuston vector formed according to

L
U=V u()). 28)
j=1

That is, the fusion vector Uy = [u(1), u(2),..., u(L)]T is
formed by concatenating the elements with the first L ranks

to form a vector of dimension L. Note that the elements
of U/ are samples from various MSMC ERPs. This cor-
responds Lo selecting different time-instants from different
MSMC ERPs. Using {/; , the Euclidean-norm nearest-mean
discriminant function for category ¢ is given by

8oL ULy = WD W) = 1/DWG], 0010, (29)

where U /e is the mean of the fusion vector of category
¢. A test fusion vector U7 is assigned to the category <y,
c} € (¢}, given by

¢} =arg mcax[gc;L(UL)l- (30)

The MSMC element data fusion strategy is summarized in
Fig. 4.

6. MSMC element decision fusion

The fusion vector for this case is formed by combining
the independent decisions of selected MSMC ERP element
scalar classifiers. Let d; =c;f where c:',f, c'jf € {c}, is given by

c;:argm(gx[gcu(j)], 3n
where u(j} is defined in Eq. (27) and

ge(u()) = u(ac() - A/DiacGHP (32

is the nearest-mean discriminant function for category ¢ and
t-(j) is the mean of u(j) belonging to category ¢, The
decision fusion vector for this case is given by

L
Dy =WV dj. (33

That is, Dy =(dy. dy, ..., d; )7 is the fusion vector formed
by concatenating the decisions of the nearest-mean ele-
ment scalar classifiers with the first L ranks. Given Dy,
the sequence of steps to derive the decision rule is identi-
cal to those described in Section 4. The discriminant func-
tion is given by Eq. (23). The probability p j.aje in the dis-
criminant function for this case is the probability that the
scalar classifier for u(j) decides category a when the true
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is summarized in Fig. 5. c
PLe)=)" Per(&P. (36)
=1

7. Performance measures

The performance of the four fusion classification strate-
gies can be specified in terms of the classification decision
probability or the classification accuracy which are com-
puted from the classification rates. The classification rate for
category ¢ is given by
Sop =1 — P g (8] x 100%, (34)
where P,y (g} is the probability of misclassifying the data
fusion vector Uy, of Section 3 when the true category of Uy
is ¢. P, (¢} is the probability of misclassitying the decision
fusion vector Dy of Section 4 when the true category of
Dy isc. P. ; (g) is the probability of misclassifying the data
fusion vector Uy, of Section 5 when the true category of U
is e. P, g (e) is the probability of misclassifying the decision
fusion vector Dy of Section 6 when the true category of
Dpise.

The corresponding classification decision probability can
be determined as

xp =[1—=Prle)l, (35)

The classification accuracy, expressed as a percentage, is
given by (a7 x 100)%.

8. Experiments and results

The data usced to design and evaluate the classifiers were
exactly the same as that used in the study described in Ref.
[2] except that the signals were not down-sampled. Each
ERP, therefore, consisted of 140 samples (140 elements in
the ERP vector). Each child was represented by (6 x 4)=24
MSMC averaged ERPs. The means and the probabilities of
each discniminant function were estimated from the respee-
tive training sets of each category.

8.1. Controlfdyslexia (2-category classification)

The 48 children were grouped into two categories: con-
trol {C = 1) and dyslexia (C = 2). The dyslexic and poor
readers were grouped into the dyslexic group. The num-
ber of children in each category was 24. Because dyslexia
occurs in approximately 10% of the population, the prior
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Table 1
2-category ranking

(a) Classification accuracies of each MSMC ERP type

Tahle 2
MSMC vector data fusion results

(a) Classification decision probabilities for the maximum classifi-
cation accuracy (o = 58.29%)

5 " True class Classifier decision

1 2 3 4 5 6 Y =1 ¥y=2
1 48.14 48.32 45,43 46.18 53.99 39.39 c=1 0.58583 041417
2 4877 52.98 51.46 4993 40,03 52.38 c=2 0.44333 0.55667
3 4534 50,58 53.52 554 53.67 51.47
4 52 51.2 41.85 48.16 57.06 43.68

{b) The channel-stimulus, stimulus, and channe! rankings

(b) Posterior probabilities for the maximum classification accuracy
{27 = 58.29%)
Classifier decision  True class

5 m C=1 Cc=2
1 2 3 4 5 6 Ry ¥=1 (.92244 0.077562
y=2 0.87006 0.12994
1 17 15 19 18 3 24 4
214 6 10 13 23 7 2
320 2 b 2 4 9 1
4 8 1 22 16 1 21 3 Table 3
MSMC vector decision fusion results
Rm 5 5 4 3 1 6 (a) Classification decision probabilities for the maximum classifi-

probabilities Py (control) and Py (dyslexia) were selected,
to be 0.9 and 0.1, respectively. The MSMC ERPs of each
category were partitioned randomly into two mutually ex-
clusive equi-sized sets to form the training set and the test
set. The channels m = 1, 2, 3, 4, 5, and 6 are FL, FR, T3,
T4, PL, and PR and the stimuli s = 1, 2, 3, and 4 are /bi/,
/gi/, /nbi/, and /ngl/, respectively. Table 1 shows the classi-
fication accuracies of each MSMC ERP type and the rank-
ings of the channel-stimuli, stimuli, and channels obtained
from the rankings of the classification accuracies. The en-
tries in Table 1(a) show the classification accuracies %/,
of each ERP type, where, as described in Section 2, an ERP
type is the ERP elicited at a given channel in response {o
a given stimulus. The number of ERP types in this study is
24 (6 channels x 4 stimuli}. The first entry in Table 1{(a) is,
therefore, the classification accuracy of the ERPs elicited at
channel 1 (FL) in response to stimulus 1 (/bif). The first en-
try in Table 1(b) shows the rank Ry = Ry/1 of the ERP
at channel 1 (FL) in response to the stimulus s = 1 (/bif).
Ry /5 has rank 1 because the ERPs of channel 5 in response
to stimulus 4, give the highest classification accuracy and
R j¢ has rank 24 because the ERPs of channel 6 in response
to stimulus 1 yield the lowest classification accuracies. The
last row gives the individual rank of each channel computed
from the marginal rank sum of Eq. (6) and the last column
gives the rank of each stimulus computed from the marginal
rank sum of Eq. (5). For example, Ry, = Rs =1 because the
sum of the Ry, values in column 5 has the smallest value.
Similarly, Ry = R3 =1 because the sum of the Ry, values
in row 3 has the smallest value.

cation accuracy (o4 = 90.29%)

True class Classifier decision

Y=1 Yy=2
C=1 0.99917 0.00083
C=2 0.96333 0.036667

(b) Posterior probabilities for the maximum classification accuracy
(24 = 90.29%)
Classifier decision True class

c=1 C=12
y=1 0.90324 0.09676
¥=2 0.16925 0.83075

Tables 2-5 show, for the four fusion strategies, the deci-
sion probabilities and the posterior probabilities for L giving
the maximum classification accuracy. The best value of L
was selected by evaluating the performances for all possible
values of L (1-24 for vector data and vector decision fusion;
1-3360 (6 x 4 x 140 elements) for element data and element
decision fusion). All classification results were estimated by
averaging the decision probabilities over 100 x 12 = 1200
tests for each category. The classifier decision is represented
by ¥, where, ¥ =1 when the classifier decision is the control
category and ¥ = 2 if the classifiers decision is the dyslexic
category. In order to interpret the results in Tables 2-5, con-
sider Tables 2(a) and (b) which show the classifier’s decision
probabilities and the corresponding posterior probabilities,
respectivety. The first entry in Table 2(a) is the conditional
probability P(¥ =1/C =1), that is, the probability that the
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Table 4
MSMC clement data fusion results

(a) Classification decision probabilities for the maximum classifi-
cation accuracy (2335 = 87.97%)

True class Classifier decision

Y=1 Yy=12
C=1 0.88667 0.15417
C=12 0.18333 0.88583

(b} Posterior probabilities for the maximum classification accuracy
(%336 = 87.97%)
Classifier decision  True class

C=1 C=2
Y¥=1 0.97754 0.022458
¥y=2 0.55535 (0.44465
Table 5

MSMC element decision fusion results

(a) Classification decision probabilities for the maximum classifi-
cation accuracy (g2 = 99.88%)

True class Classifier decision

Y=1 Y=2
C=1 1 0
c=2 0.01167 0.98833

(b) Posterior prababilities for the maximum classification accuracy
(%2822 = 99.88%)
Classifier decision  True class

C=1 C=2
¥ =1 0.99871 0.001295
Y=2 [¢] 1

classifier correctly classifies control subjects. The first entry
in Table 2(b) is the conditional probability P(C=1/Y =1)
which gives the probability that the test subject is from the
control group given that the classifier has decided that the
test subject is from the control group (true-negative proba-
bility), The posterior probabilities are computed using Bayes
rule, Table 6 shows the interpretation of the posterior prob-
abilities in terms of the probabilities of true negatives, false
negatives, false positives, and true positives.

For comparison, the results of discriminant analysis from
the previous study, for the two-category case, using the prior
probabilities of (1.9 and 0.1 are shown in Table 7. In studies
such as the one reported in this paper, the posterior probabil-
ities are quite important because the performance in terms
of the classification accuracy by itself can be quite mis-
leading. Consider, for example, the decision probability of

Table &
Positions of true negatives, false negatives, false positives, and true
positives in Tables 2(b)-5(h)

Classifier decision True class

C=1 C=2
¥=1 True negative False negative
Yy=2 False positive True positive

Table 7
2-category discriminant analysis results from previous study

(a} Classification decision probabilities

True class Classifier decision
Y=1 y=2

C=1 0.79 0.21

c=2 0.083 0.916

(b) Posterior probabilities
Classifier decision  True class

C=1 Cc=2
¥=1 0.9884 0.01153
Y=2 0.6735 0.3264

0.8125 which was reported in Ref. [2]. Although the classi-
fier’s decision probability is quite high, the probabilities of
a false positive and a true positive are quite high (0.6735)
and quite low (0.3264), respectively, as seen in Table 7(b).

8.2. Comtrolidyslexia/poor readers (3-category
classificarion)

The 48 children were grouped into three categories: con-
trol (C =1}, dyslexia (C =2}, and poor readers (C=3). The
corresponding classifier decisions are represented by ¥ =1,
¥ =2, and ¥ = 3. The number of children in the categories
were 24, 17, and 7, respectively. The prior probabilities Py
(control), Pz (dyslexia), and P3 {(poor readers) were selected,
to be 0.9, (17/24 x 0.1) = 0.07, and (7/24 x 0.1) = 0.03,
respectively. Because of the small number of MSMC ERPs
in the poor reader category, the MSMC ERPs of each cate-
gory were partitioned using the “leave-one-out” method to
form the training set and the test set. Table 8 (a) shows
the estimated classification accuracies «g/, of each MSMC
ERP type as described in Section 2. The channel-stimulus,
stimulus, and channel rankings are presented in Table 8(b).
All results were estimated by averaging the classification
accuracies using the “leave-one-out method.” Tables 9-12
show, for the four fusion strategies, the results for L giv-
ing the maximum decision probabilities and the correspond-
ing posterior probabilities. For comparison, the results of



2182 H. Kook et al. / Pattern Recognition 38 (2005) 2174 -2184

Table 8
3-category rankings

Table 10
MSMC vecior decision fusion results (3-category)

(a) Classification accuracies of each MSMC ERP type

X "t

| 2 3 4 5 6

28.12  31.84 2842 3460 4450 1259
2381 5095 4558 3879 2270 4378
2510 4196 4042 4574 4443 4637
3353 2742 2043 2739 4854 2285

b —

(b) The channei-stimulus, stimulus, and channel rankings
s m

1 2 3 4 5 6 Ry
1 16 14 15 12 6 24 3
220 1 5 11 22 8 2
I 9 9 10 4 7 3 1
4 13 17 23 18 2 21 4
R 6 2 4 3 1 5
Table 9

MSMC vector data fusion results (3-category)

(a) Classification deciston probabilities for the maximum classifi-
cation accuracy (%) = 60.78%)

True class Classifier decision

Y =1 Y=2 Yy=3
C=1 0.64671 0.32913 0.02416
Cc=2 0.56127 0.30462 0.1341
C=3 0.18382 0.67332 0.14286

(b} Posterior probabilities for the maximum classification accuracy
(211 = 60.78%)
Classifier decision  True class

c=1 Cc=1 C=3
Yy=1 092806 0.063392 0.0085489
¥=2 0.87786 0.063945 0.058199
¥=3 0.61407 026826 0.11767

discriminant analysis from the previous study, for the three-
category case, using the prior probabilities of 0.9, 0.07, and
(.03 are shown in Table 13.

9. Congclusions

The goal in this paper was to obtain very high accuracies
for predicting dyslexia in children from their MSMC ERPs
recorded at birth. A ranking strategy was developed to
rank the channel-stimuli combinations, channels, stimuli,

(a) Classification decision probabilities for the maximum classifi-
cation accuracy (%24 = 95.65%)

True class Classifier decision

Y=1 Yy=2 Y =13
C=1 0.99125 0.007703 0.001050
c=2 0.382 0.59139 0.026611
c=13 0.15371 0.07458 0.77171

{b) Posterior probabilities for the maximum classification accuracy
(234 = 95.65%)
Classifier decision  True class

C=1 Cc=2 C=3
Y=1 0.96585 0.02939 (.004854
Y=2 0.13564 0.8214 0.042654
Y=3 0.03731 0.07439 0.8883
Table 11

MSMC element data fusion results (3-category)

(a) Classification decision probabilities for the maximum classifi-
cation accuracy {(xgp = 77.14%)

True class Classifier decision

Y=1 Yy =2 Yy=3
C=1 0.83333 0.15406 0.012601
C=2 0.39881 030182 0.29937
Cc=3 0 i ¢]

(b) Posterior probabilities for the maximum classification accuracy
{2260 = 77.14%)
Classifier decision  True class

C=1 =2 C=3
¥=1 0.9637 0.036298 0
¥y=2 0.73285 0.113 0.15416
Yy=3 0.34853 0.65147 1}

and ERP elements in terms of their effectiveness in ¢las-
sifying dyslexia. The prediction problem was formulated
as a classtfication problem and the rankings were used to
develop two MSMC data-fusion and two decision-fusion
classification strategies. The data-fusion methods system-
atically combined the rank-ordered MSMC ERP vectors
or the rank-ordered MSMC ERP elements. For each case,
the resulting data fusion vector was classified using a
single vector nearest-mean classifier. In the decision fu-
sion strategy, the independent classification decisions of
rank-ordered MSMC ERP vectors or the independent clas-
sification decisions of rank-ordered MSMC ERP elemenis
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Table 12
MSMC element decision fusion results (3-category)

{ay Classification decision probabilities for the maximum classifi-
cation accuracy (497 = 100%)

True class Classifier decision

Y =1 y=2 ¥=3
C=1 1 0 0
c=2 0 1 0
Cc=3 1] 0 1

(b) Posterior probabilities for the maximum classification accuracy
(2297 = 100%)
Classifter decision  True class

Cc=1 C=2 C=3
Yy=1 | 0 0
Yy=2 0 1 0
Yy =3 0 0 1
Table 13

3-category discriminant analysis results from previous study

(a) Classification decision probabilities

True class Classifier deciston

Y=1 Yy=2 Yy=3
Cc=1 0.79 0.08 0.13
c=2 G.12 .78 0.12
c=3 o] 0 1

(b} Posterior probabilities
Classifier decision  True class

C=1 c=2 c=3
¥=1 0.9882 0.0118 0
Y=2 0.5752 0.4278 0
¥=3 0.7665 0.0550 0.1886

were combined into a decision fusion vector. The resulting
decision fusion vector for each case was classified using a
Bayes discrete vector classifier.

The fusien classification strategies were tested using ex-
actly the same data in the study reported in Ref. [2]. The re-
sults presented facilitate performance comparisons not only
between the four fusion classification strategies but also
between ERP vector fusion versus ERP element fusion as
well as data fusion versus decision fusion. The best results
were obtained using MSMC element decision fusion. 1t was
shown that a classification accuracy of 99.88% with zero
false positives are possible for the control/dyslexia predic-
tion problem using L = 2822 ERP elements out of the total
of 3360 elements. For the control/dyslexia/poor reader pre-

diction problem, a classification accuracy of 100% was pos-
sible using “leave-one-out” evaluations using L — 497 ERP
elements. Thus it can be concluded that future reading dif-
ficulties can be predicted with almost 100% accuracy. The
significance of the decision fusion results can be appreciated
by noting that, individually, the best (L = 1) MSMC ERP
vector and MSMC ERP element give classification accura-
cies of only 57.00% and 74.43% for the two-category case,
respectively, and 50.95% and 69.95% for the three-category
case, respectively. Additionally, the significant reduction in
the false positive probabilities must be noted by comparing
the results with those reported in Ref. [2] (Table 7(b)). In
terms of complexity, the data fusion strategies require only
a single vector classifier whereas the decision fusion clas-
sifiers require multiple element (scalar) classifiers and an
additional Bayes discrete vector classifier. The scalar clas-
sifiers are, however, computationally relatively simple.

The results presented in this paper further support the find-
ings reported in Ref. [2]. That is, auditory ERPs recorded
within 36 h of birth can successfully predict reading perfor-
mance in children 8 years later. Therefore, potential prob-
fems in language or cognitive development can be identi-
fied at birth and, consequently, planned interventions can
be introduced earlier to the child and be more successful
in the remediation of the child’s later emerging language
problems. This will have a tremendously positive impact by
avoiding the psychological damage resulting from being la-
beled “slow”, enabling the child to take full advantage of
his/her schooling and thus make it possible to reach his/her
full intellectual potential.

In summary, it is shown that through the MSMC ele-
ment decision fusion classification strategy, dyslexia and
poor reading can be predicted with almost 100% accu-
racy from the ERPs of infants. Furthermore, because the
formulations of the MSMC fusion classification strate-
gies are quite general, they can also be applied to other
multi-category prediction/classification problems involving
ERPs and, in general, to multi-category multi-sensor signal
classification problems.
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