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Abstract

With the advent of dense sensor arrays (64 -256 channels) in clectroencephalography and magnetoencephalography
studies. the probability increases that some recording channels are contaminated by artifact. If all channels are required
1o be artifact free, the number of acceptable trials may be unacceptably low. Precise artifact screening is necessary for
accurate spatial mapping. for current density measures, for source analysis, and for accurate temporal analysis based on
single-trial methods. Precise screening presents a number of problems given the large datasets. We propose a procedure
for statistical correction of artifacts in dense array studies {SCADS), which ( I} detecls individual channel artifacts using
the recording reference, (2) detects global artifacts using the average reference, (3) teplaces artifact-contaminated
sensors with spherical interpolation statistically weighted on the basis of all sensors, and (4) computes the variance of
the signal across trials to document the stability of the averaged waveform. Examples from 128-channel recordings and

front numerical simulations ittustrate the importance of"carefol artifact review in the avoidance of ‘analysis errors.
Descripters: Multichannel, EEG, MEG, Event-related potentials, Averaging, CSD

In recent years it has become evident that accurate recording of
electrical or magnetic brain fields often requires adequate spatial
sampling to.avoid spatial aliasing (Tucker, Liot, Potts, Rusself, &
Posner, 1994; Wikswo, Gevins, & Williamson, 1993), Dense sen-
sor array electroencephalogram ( EEG) systems (64 -256 channels)
are now used in many laboratories, Estimates of the spatial Nyquist
frequency® of the human EEG and-averaged: event-related: poten-
tia} (ERP} suggest that an intersensor distance of 2-3 cm is re-
quired to achieve adequate spatial sampling (Spitzer, Cohen,
Fabrikant, & Hallett, 1989; Srinivasan, Tucker, & Murias, 1998),
With an even distribution of sensots across the head surface, a
sampling density of less than 3 cm requires {28 sensors, and a
density of less than 2 cm requires 256 sensors (Tucker, 1993).
Similarly, magnetoencephafogram { MEG) systems have been scaled
to whele-head coverage, and may now measure from 122 1o 148
sensors at a time and twice as many in the near fulure. Both the
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! The recorded potential across the scalp can be described by ils spatial
frequency; whichrefloets (ho- vasistion- e the-signal soress e head-susfacs:
As is truc of sampling in timc domain. the sampling rate has to be at [east
twice the highcst-appearing lrequency in the measurcment. In the case of
spatial frequency. usc of a spatial sampling rate (sensor density) Ioss than
the Nyquist frequency leads to spatial aliasing,
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correctness of the scalp topography and the localization of neural
generators depend on a sufficient spatial resolution (Funghéfer,
Elbert, Leiderer, Berg, & Rocksiroh, 1997; Tucker, 1993).
However, recarding from dense amrays presents new prob-
lems for data acquisition. Although many creative theoretical
approaches and some empirical studies have been advanced for
the problem of electrical- or magnetic source analysis, (here has
been litle atiention to the problems of statistical management of
data quality in multichannel EEG and MEG systems. The results
of topographical analysis as well as source analysis depend
strongly on the quality ofthe data ofeach sensor that enters the
analysis. The likelihood of errors due fo noise or other artifacts
increases with the number of sensors, If, in a given trial, arti-
facts are restricted to a few sensors, the trial still contains valu-
able information. However, simply removing the artifact-
contaminated sensors from the average will inroduce a specific
class of emors. We propose a method for averaging multichannel

pography, current density analysis, or source localization due 1o
missing sensors, and (3) provides statistical information about
the- data- quality. for each- channel. in- the- arvay.

ERP analysis (ypically begins with a three-dimensional matrix
{tria! X sensor X time) EEG,, , , with n denoting the number of
trials or recording epochs, s the number of sensors, and r the
number of time samples within a trial. Although we [bcus on
electrical recordings in the present report, a similar structure is
used for event-relasted MEG analysis. Data processing then com-
ptises the following steps:
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« First, the influence of extraneous noise resulting from movement
or sensor (electrode) artifacts is controlied by rejecting epochs
with large amplitudes. A criterion is set such that within a given
epoch 4 and for a given sensor s the range of data points EEG,, s
for all time points ¢ does not exceed a predefined absolule am-
plitude {for the EEG, for instance, a range of 100 pV is sug-
gested; Elbert, Lutzenberger, Rockstroh, & Birbaumer, 1985). In
case of violation. of this requirement, the data recorded. {rom. a.
particular sensor will be declared as artifact contaminated for
that particular trial.2 If this problem recurs frequently in a given
data set, the rejection sirategy may be elaborated as follows: {a)
if data of one or several identified-sensors wm out to be of poor
quality throughout a significant portion of the N trials, these
sensors will be rejected completely from further analyses (from
all trials). {b) Alternatively, an EEG,,, epoch is rejected entirely
il a significant portion of the ¥ sensors turns out Lo be artifact
contaminated.

* Second, artifacts from eye movements and blinks, as determined
by periorbital electrooculogram (EOG) channels, are detected,
Trials with artifacts may be rejected. or algorithms may be used
to subtract the ocular artifact from the EEG channels (as de-
scribed. for instance, by Berg & Scherg, 1991: Elbert el al.,
1985).

+ Third, the remaining trials are averaged for each sensor and the
resulting averaged ERP is then analyzed further.

Alihough this procedure is commonly used, the selective elim-
ination of artifactual trials or channels has significant drawbacks,
particularly when applied to dense array data:

+ First. if a sensor is noise contaminated in some but not all trials,
the. cxperimcnter has to- decide whether the rejection. of that
particular sensor, or the rejection of the noisy trials, will be
appropriate. Often this decision is based on a rule of thumb that
is not tailored to the specific data set; For example, if more than
20%: of the sensors on a trial are notsy reject the trinl; otherwise
reject the data (rom individual sensors. Both trial and individual
sensor data rejections result in a loss of signal information, and
both actions may introduce a bias into the results.

Second, according to the “all or none” excessive amplilzde rule,
that is, that a given amplitude range should not be exceeded at any
sensor during a trial, all trials for which this criterion is not met
will be rejected irrespective of how many sensors are problem-
atic. Furthermore, because they have different positions in rela-
tion to skutl conductivity and brain sources, different EEG sensors
have different EEG signal amplitudes, This will result in different
background EEG amplitudes, depending on their distance [rom
the reference sensor, and this background EEG is considered the
“nois¢” in ERP averaging. Artifactual amplitudes thus summate
with different EEG amplitudes for-diffecent channels.

M. Junghdifer et al.

* Third. once averaging has been accomplished, no siatistical in-
formation about the noise level for particular sensors, or about
the set of measurements as a whole, is available. As a conse-
quence, data sets with different noise levels are compared within
one statistical procedure. The lack of noise information limits the
power of inverse source modeling methods such as the least
squares {Press, Flannery, Teukolsky, & Vetterling, 1986), chi-
square, maximum-tikelihood. (Sikihara, Ogura, & Hotta, 1992),
or minimam-norm methods (Himildinen & limoniemi, 1984).
All these techniques can make good use of information on noise
heterogeneity.

The crudeness of artifact screening and signal averaging con-
trasts with the effort that is invested in further data analysis, such
as. MRI-constrained. source modeling with, realistic head. models.
Empirical research (Braun, Kaiser, Kinces, & Elbert, 1997) has
shown that the accuracy of current source modeling is highly de-
pendent on the noise level of the daia.

Overview

Therefore, we propose the following method. for statistical. control.
of artifacts in dense array studies (SCADS). The analysis requires
two passes al the data, the first with the data kept in the recording
reference, and the second with the data transformed to the average
reference.

The first pass detects and rejects artifactual channels, in the
recording reference {e.g., vertex referenced), to avoid contamina-
tion of all channels by the artifacts when transforming EEG data to
the average reference. The average reference is computed by sub-
tracling the polential average across all S sensors at one point of
time from each single sensor potential at this point of time. There-
fore artifacts of single sensors will contaminate the average refer-
ence (and thus all other sensors) by a factor of 1/5.% Onee this pass
is complete, the average reference may be computed to allow
accurate topographic mapping and topographic waveform plots.
An-accuratc-average- reference- is uniquc-1o.-donsc-amay. studics. It
requires a minimum of 64 channels, distributed (o the inferior head
surface as well as the top of the head (Junghéfer, Elbert, Tucker,
& Braun, 1999; Tucker et al., 1994).

Some EEG analysis methods, such as source tocalization pro-
cedures, do not require transformation to the average reference
{because the reference site may be modeled explicitly). In these
cases, or in case of MEG data {which does not require a reference),
the first stage can be omitted as it will be repeated in the second
pass.

In the second pass, based on the average reference, globat
artifacts. may. be more. clearly. identified because the reference
bias has been removed. Individual artifactual sensors that were
identifted in the first pass may be interpolated and replaced to
complete the dataset and avoid the biases introduced by missing
dﬂ{ﬂ:

*For the sake of clarity, the term sensor will be used from here on,
referring lo SQUID (superconducting guamium interference device) scn-
sors in MEG and clecirodes in EEG recordings. For EEG recordings, it is
important to remember that cach channel is comprised of the scalp poten-
tia! ficlds asscsscd by two scnsors, onc typically considered to be the
reference, and that there are no privileged reference sites on the head whene
the, patcatial remains constant acmss time. In_this disenssion, we sssume
the recording is with a common refetence (rather than different bipalar
clecirodes For cach channet).

?Scnsors with artifactually attenuated signals, such as #114 in Figure 1,
would be hard lo detect after the transformation 1o averaged reference, as
they then would include the signal at the reference location (appropriatety
cstimated ag zoro minus the average reference) in addition to their own small
signal. IT such a scnsor is distant [rom the reference, as in the present cx-
ample, it is casily deteeted as artifact conlaminated because its signal dis-
rribmtion differs feom those af the neighhoring sensors. 1F, howaver, a 1 SONSOr
is povuoncd adjacenl o the. rcl‘cmncc. its slgnal dcvmhon Tnay go undclcctud,
while still gencrating distortions of the spatial potential distribution.
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Precedure

After oullining the steps of the analysis procedure, we will de-
scribe each in detail.

1. First Pass---Based on the Recording Reference:

L.1. Filter, thereby attenvating or removing artifacts in frequency
bands that are not of interest for the analysis;

1.2, Construct editing data matrices;

1.3, Deteet and reject consistently. contaminated. sensors (i.c., scar
sors exceeding a criterion of contamination throughout he
experimental session);

1.4 Reject contamipated sensors in. specific trials (10 avoid. the
contamination of entire epochs when transforming 1o average
reference);

1.5, Transform the ediled data te average reference (to minimize
the dependence of signal and noise amplitudes on the distance
between the sensor and the chosen reference site).

2. Second Pass---Based on the Average Reference:
2.1. Construct editing data matrices (as step 1.2);

2.2. Determine and reject contaminated sensors in specific trials
(based on.the given ediling matrices);

2.3. Reject contaminated trials;

24. Average the remaining epochs, using interpolated values for
distinct contaminated sensors (to avoid a different number of
averaged epochs for different sensors);

2.5. Compute the standard deviation across alt trials included in the
average.

1. First Pass Based on the Recording Reference

L1 Filter
The decision to reject a given trial from the average should pro-
ceed afler bandpass filtering within the frequency band of interest.
For ERP studies, retention of near-DC variation is usuaily pre-
ferred because siow brain potential changes may be meaningful,
and higher frequency information related to sensory potentials may
also be important. 1t is therefore best to record with a broad band-
pass {e.g., 0.01--100 Hz), then filter digitally, such as with a band-
stop or noich to filter out the 50- or 60-Hz main power line.
The filier can be applied before segmentation of the ongoing
stream of data into trials. If trials are filtered, any artifact produced
by a fixed filter length must he minimized or subtracted from the
beginning of the trial. Stimulus artifacts, such as {rom an electrical
stimuius, must be removed before filtering. Otherwise, digita! fil-
tering will temporally smear the artifact, making its removal more
difficuli.

L2, Construct Editing Matrices

Editing data matrices are constructed to remove or correct sensors
that are artifact contaminated. For this matrix construction, the
maximum absolute value over time, the standard deviation over
time and the maximum of the gradient of values over time (first
derivative) are determined for every epoch. These three parameters
display diflerent sensitivities for specific artifacts. For instance, a
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sensor that is noisy throughout the entire epoch may produce nor-
mal amplitude values, whereas the noise contamination would be
apparent in the standard deviation. Furthermore, transient artifacts
may become obvious only from examining the first derivative,

Three N x § data matrices M are produced with elements m,,
for the nth epoch or trial at the sth sensor. The elemenis m,, of the
first matrix contain the maximal absolute value of the sensor s and
the trial n.over time. The second. matrix comprises. the standard.
deviations across the trial time interval. The third matrix describes
the maximal temporal gradient. If the time interval of interest does
not correspend to the entire trial interval, for example, the analysis
targeis only the first part of a recordedepoch, the calculation ofthe
elements m,,, should be based on the targeted time inlerval to avoid
rejection of trials or sensors because of artifacts occurring in non-
targeted time segments. Moreover, it might be necessary to ex-
clude a distinct time segment with obvious stimulus-induced or
other experiment-specific artifacts from this calculation to avoid
rejection of trials or sensors just because of this specific artifact,
The editing matrices thus allow a focused screening of the data for
the unique conditions of the experiment.

Additional criteria and matrices can be created. Coherent bio-
logical noise, such as from alpha waves, ofien poses a problem for
ERP sousce-modeling. Therefore, alpha.power might be-specified
in a further editing matrix in order to identify trials with large-
amplitude alpha waves,

1:3: Detect and-Reject Gonsistemtly Gontaminated-Sensors
The parameter { g} matrices computed in step 1.2 (absotute max-
imum, standard deviation, and first derivative) are used to deter-
mine contaminated sensors by creating a statistical measure of the
degree and consistency of the artifactual values. A confidence
coeflicient is introduced to weight this measure. Medians are used
to avoid the influence of extreme values.

We first calculate the corresponding boundary values for
Limy(p) for each parameter matrix p (Figure LB):

Lim.(p,A} = medg{medi{p, ,))

—————
2 (medi p,, ,) — medgimedi(p, .

y=]

£,

O Lime(pA) =d %A,

P.u: value of sensor s, trial n, and parameter p (absolute maxi-

mun across time: standard deviation across time; absolute maxi-
mum of first derivative across time)

medy: median across all trials N;
medy: median across all sensors §;
A,: confidence coefficient has to be chosen by the user.

Since ¢ = medi( p, ,) is the median across all trials for a given
sensor, then & = meds{medi(p, ) is the grand median across
these § medians {a fixed value for each of the three param-
eter lypes p). Therefore, the root-part of the given equation
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3

=z, — 6P
5] - - o
- is similar to a standard deviation except that 4 is

the median and not the mean across all § median values. The
general form of the equation as a whole resembles a robust (be-
cause it is based on medians)} confidence interval, with the confi-
dence coefficient replaced by A, and the SE replaced by a median-
based SE equivalent.

In computing the confidence intervals for each sensor, a phys-
ical property of the data recorded with respect to a common ref-
erence site must be considered. This property is iilusirated in
Figure 1A: the sensors close to the reference will measure only a
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small potential difference from the reference site {(because there is
only a small amount of brain tissue generating a vollage difference
between the index sensor site and the reference site). In the present
example. the vertex sensor (Cz) served as reference. Figure 1A
plots the amplitude (medium of absolute maximum) at each sensor
site as a function of its polar angle from the Cz reference, which
was deflined as zero (the pole}. A larger polar angle means more
brain tissue contributing 1o the potentia! difference, and thus a
larger channel amplitude (sensor site minus reference site poten-
tial}. This reference-dependence effect occurs with any (e.g., nose,
mastoid, noncephalic) reference, and the effect can vary in a com-
plex fashion between subjects and experimental conditions (Jung-
héfer et al,, in press).

Median of absolute ma:_dmum [uV]

Polar angle distance

Median of absolute maximum [uV]

114

90 135

Polar angle distance

Figare 1. Removal of artifact contaminated channcls based on SCADS siep 1.3. (A) Each asterisk corresponds 1o an clectrade,
sorled according to their polar (theta) angle on the abscissa. The z-axis points from the center of the head through the reference
clectrode (in this case the veriex). The ordinale indicates the noise level computed as the median across trials of the maximum of
absolume values within a sensor cpoch. The dashed line shows the least square regression of sccond degree. (B) Afcr subtraction
of the rogression function, data from sensors that lic above or below the calculaied confidence interval with boundary valucs
Limy(p} (upper and lower dashed linc) can casily be identificd and removed.
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To remove this efTect, and thus equate the conflidence intervals
across the recording channels, the sensors are arranged according
to their polar anguiar distance from Cz and the resulting function
#l(s) is interpolared using a second degree polynomial least square
regression. The original data a(5) are corrected 0 cls) by the
resulting spatial dependency b{s), such that c(5) = a(s) — bix)
(see Figure 1B). Now the final confidence interval for each pa-
rameter p can be caleulated:

lettp,l\.) =¢+ A‘n‘

If the spatial corrected median across all trials for a given
sensor ¢(¥) exceeds the confidence intervals for any of the three
parameless, it would be rejected from the analysis. Based on the
analysis of a large assortment of data sets a p independent value of
A - 2 seems 1o be a good choice to reject consistently noisy
sensors while keeping data from sensors that show large signals
that may be just large amplitude ERPs.

Figure 1B tllustrates the confidence interval for an analysis
based on the absolute amplitude maximum (first parameter). Sen-
sors 91 and 114 can be seen to be contaminaled by artifacts through-
out the measurement interval, and are thus candidates for rejection
and replacement by interpolation.

Figure 2A illustrates a dala set from which only sensor #82
{bottom of sensor array} was rejected completely.

L4. Detect and Reject Contaminated Sensor Epochs

In the next step, the individual sensor epochs (i.e., a single sensor
channel s for a single trial #) are removed if the value of one of the
three parameters for the sensor epoch p, , exceeds the following
coniidence interval (calculated across all trials Yor that sensor
channel):

Limi(p) = mediip, )

N
2 (Pey— medN(Pw.n))z

el

N

ﬁ(d—&‘)’

n=|

medj;: median across all trials & of sensor s;
4, confidence cocfficient has to be chosen by the user;

Again a p independent value of & = 2 is a good choice fo select
sensor epochs with excessive noise content.

1.5. Transform the Edited Data to Average Reference

Trials for which the resulting number of sensors with adequale data
is less than a specified threshold are removed from further analy-
sis. This threshold varies from experiment to experiment. For a
clinical study of dementia it may be necessary 10 accepi data with
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Figure 2. (A} Histogram of (he maximum absolutc values of singlc scosor
cpochs calculated for each sensor. The uscr must defing interactively the
upper boundary of the amplitude range that is accepted. A total of 480 trials
was distributed among 12 conditions, 40) trials cach. The upper limit was
determined individually per channel {the distribution marked in gray indi-
cates data [rom the acquisition reference Cz [129]). Note that data from
sensor 82 was removed in step 1.3 of the data processing. The histograms
for the standard deviation and for the largest gradient arc typically similac
to thosc of the largest amplitudes. (B) Frequency distribution magnificd for
a single channcl. OF the 480 original irials, 29 arc rcjocted and 458 (94%)
arc accepled for further analysis.

80 of 128 sensor channels with acceptable data; for a normal study
with well-trained volunteers it may be possible to require 128 of
128 sensor channels . At this point, the accepled data are trans-
formed 10 the average reference.

2. Second Pass Based on Average Reference

2.1 Construct the Average-Referenced Editing Matrices
If step 1.2 is repeated using the average reference data, artifacts
prociuced by the reference sensor can be {aken inlo account. Fur-
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thermore, the dependency of signal and noise power on the dis-
tance from the reference is no longer relevani. All calculations up
to this step are accomplished by an automatic computer algarithm
without necessity of interactive control.

2.2 Detect and Reject Artifact-Contaminated Sensor Epochs
Identifying distinct sensors from particular trials should be based
on visual inspeciion---in contrast to the automated detection of the
[irst stage- for the following reasons: Because the noise may not
be normally distributed and signal amplitude may not be constant
across the trial, the contour of the frequency distribution of a
sensor does not clearly indicale its noise. However, trials with
abnormal amplitudes can be identified - as illustrated in Figure 2B
for one sensor selected from the whole-head array in Figure 2A.
Outliers in the distribution typically result from arlifacts such as
eye blinks, eye movements. or body movement. The probability of
such artifacts, as well as those resulting from marked drifts, in-
creases with the number of channels and with the duration of the
data acquisition period.

Figure 2B illustrates a frequency distribution of amplitude max-
ima (amplitude histogram) for a given sensor. These are created by
selecting the data point in each trial with the largest absolute
deviation from zero. The critical upper himit for the amplitude
maxima was chosen based on inspection of the histogram. All trials
with values above this limit (indicated by the dashed line in Fig-
ure 2B} are removed---in the given example this number amounts
to 29, so that 451 (94%) trials remain for further analysis.

The removal of individual sensor epochs is illustrated in Fig-
ure 2A. The maximum absolute amplitudes across trials are log
normally distributed, that is, they are skewed toward lower ampli-
tudes. In an interactive manner, the experimenter must determine
the upper and lower boundaries between which the data are ac-
ceptable. II a distribution is extremely broad or exhibits multiple
peaks, the sensor may be removed completely (alihough such sen-
sors should have been already removed when applying step 1.2 of
the suggested first pass data processing). Under certain circum-
stances, bimodal distributions for some sensors may be observed.
In general, this bimodality could indicate thal a sensor---for in-
stance due to movement--has lost its skin contact in the course of
the acquisition period. This disruption will produce an abrupt in-
crease in noise amplitude. In such cases a good strategy is 1o define
the boundary amplitudes just above the distribution with the lower
signal amplitudes.?

Boundaries have to be determined for each of the three param-
¢ters (absolite maximum, largest standard deviation, largest gra-
dient). We have observed that the standard deviation and temporal
gradient distributions resemble the distribution of the maximum
amplitudes iltustrated in Figure 2. Sensor epochs for which one or
more of ihe three measures is outside of the respective predefined
boundaries are removed from Further analysis. whereas all others
are included in the average. '

A computerized automatic processing of this outlined step would
be desirable, particularly lo standardize the described criteria for
rejection. Automalic processing would also be complex, because

*Inspection of Figure 2A points lo yel another noleworthy effcct: sen-
socs in the center of the sensor conliguration show narrower disiributions
and gmaller amplitudes than sensors in more inferior regions. This differ-
cnce is a consequence of the inadequale sampling from the inferior head
sur faces (fuce and neek) thet does not meet the eriteria for detenmining the
average reference. The effects of this “polar averuge referonce cffect™ are
discussed in Junghdfer ct al. (1998).
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the distributions of the three editing matrices M depend on the
unique characteristics of the signals.®

2.3. Reject Contaminated Trials

To identify trials contaminated by artifacts at many or all sensors.
a histogram of the distribution of artifact-contaminated trials per
sensor is constructed (Figure 3}. On the basis of the histogram, the
experimenter determines a lower boundary for trial rejection, This
procedure improves the accuracy of the subsequent sensor epoch
interpolation.”

With 118 selected as the minimum number of good sensors per
trial, of all trials showing more than 10 bad sensors within one trial
are rejected from furiher data analysis. In the present example, 90
{23%) of the 480 trials are rejected due to aniifacts that affect at
least 11 sensors. Even ifthe boundary for trial rejection is lowered-—
for instance to 110 good sensors per trial —-only a few more trials
would have been saved for further analysis, all of them with in-

*[hough ihc authors recommend visual inspection to guide data screen-
ing, the following calculation provides rcasonable defanit values for the
upper threshold for cach sensor s and parameter p: Lim . (p,.0} =

VN
max ] A Lot ~oye
( Fodie s p—p

Y Lim. (g, v)~Lim_{p.}
simply the minimum of p..) The root cxpression in the denominator de-
seribes the standard deviation of the given patamcier p for one sensor s
wilhin the interval trom the lower Lo the upper threshold. Because the
signal-lo-noise ratio (S/N) of the final average incrcases with the squarc
root of the contributing number of trials N, this ratio incrcascs with cx-
pansion of the threshold interval, However, the extension of the upper
threshold also lcads to a reduction in §/N, becausce dissimilarity of trials
will increase. The inverse standard deviation function of the paramaier
distribution depending on the threshold intcrval can be used 16 quantify this
S/N decrcasc. The aim of the everall function is, therefore, to determine
the thresholds that maximize S/N depending on the number of trials with
consideration of irial likelihood. The cocflicient expenent u weights the
importance of trial likclihood in comparison to the number of tials and has
10 be choscn by the user. We found 0.5 to be a reasonable vatuc to account
for an appropriate trial vartance.

In order to take into account the spatial scalp distribution of the fina)
uppet thresholds ti.c., neighboring sensors should show similar thresholds),
we calculate a “threshold deviation valuc™ for cach sensor. This value is the
sum of the “nontincarly weighted™ differcnces between each scnsor Lhresh-
old and al! other thresholds. The weighting corresponds roughly to the
inverse of the spatial distance (the spherical angle distance). However,
using spherical splinc interpolation this weighting is not lincar.

Finally, the program suggesis rcjecting all sensors for which threshold
deviations fall beyond two standard deviations of the median over all
threshold scnsor deviations. 1f based on a large number of trials (ic., >
100, this procodurc docs nat require additional manual editing and could
be used 1o standardize sensor and trial rejection crileria.

“The simple choice of 2 minimum number of intact channcls per trial
(also wsed in SCADS step 1.5) docs not take into account the spatial
arrangement of the rejected sensors. 18 they arc all in the same region, then
intcrpotation will be inadequate for that region. To solve this problem we
would likc to have a paramcicr thal describes the overall accuracy of
interpolation. Using ncarest neighbor interpolation, this parameter could be
the averaged spherical angle distance from the index sensor {the one to be
inicrpodated) o the neighboring sensors used for intcrpolation {sce, ¢.g.,
Nuncz, 1981), This is actually the average across all interpolation weights
{dcoreasing lincarly with increasing angular distance in the case of the
ncarcst neighbor method). However, using spherical spline interpolation,
the scnsors arc not lincarly weighted. In this casc an clegant selotion is the
interpolation of given spatial test functions (actually the spherical splinc
funclions themselves based on the given configuration of intact and re-
Jected channels using the same spherical spiinc functions chosen for the
following average procedure). The accuracy of this interpolation depends
nol only on the number ol rcjected channels but also on their spatial
rclations.

)M {in most cascs Limr.{p,) is the
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¥igure 3. Histogram of a typical distribution of channels that result from
SCADS step 2.3. With the given minimum number of good scnsors per trial
of 118, all trials--90 of the total 480 (23%). - showing 11 or more bad
sensors within one trial arc rejected from further data analysis.

complete sensor sets. In experiments with many trials per condi-
tion, it is desirable to choose a high boundary, because the loss of
trials will then have a tolerable eflect on the signal-to-noise ratio.
If a distribution with a clear peak, like the one in Figure 3, is not
obtained, the choice of the lower boundary may be based on the
number of remaining trials.

2.4. Average the Artifact-Free Trials with Interpolated Values
for the Artificial Sensor Sites

Before averaging the remaining trials (i.e., all trials with a sufli-
cient number of inlact sensors remaining at this step), ail sensor
epochs that have been identified above as artifact contaminated are
replaced by interpolation. The interpolation is achieved with
weighted spherical splines fit to the intact sensors. In contrast to
nearest neighbor interpolation, spherical splines are fit to all re-
maining sensors, such that the influence of each sensor is weighted
nonlinearly by the inverse of its distance to the missing sensor and
by the specific noise level (i.e.. more disiant and/or noisier sensors
are weighted less than closer and/or cleaner sensors). This esti-
mation and reconstruction of rejected sensor epochs is of particular
imporiance 1o maintaining the accuracy of the dense array repre-
sentation. The complete dataset, including the estimated inter-
polated data, may be computed and stored if single-rial analyses
(such as spectral, latency-adjusted averaging. or nonlinear analy-
ses) are desirable. Otherwise, the estimation and reconstruction
can proceed with the averaged ERP epochs.

Accurate surface potential distributions are particularly impor-
tant for estimating radial current source density (CSD) from the
wo-dimensional (2D) Laplacian of the poleniial. Assuming no
sources in the scalp, the 2D (surface) Laplacian is proportional to
the radial current flow in or out of the skull at the computed point.
The estimation of CSD based on spherical spline interpolation of
EEG scalp potentials was first developed by Perrin, Pernier, Ber-
trand, and Echallier {1989). The calculation of the weighted spher-
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Figure 4, Rosults for a lypical noisc-weighted interpolation of single
sensor cpochs. The rejected scnsors arc marked with an asterisk. (A)
The original data set and (B} the marked detail view of (A} afier single
trial corrcetion. {Channcl 9t cxhibils the conscquences of a resel, occur-
ring during the trial, in which a sensor with a large clectrochemical
olfsel oxeceds the input range of the amplifier, and (he inpul capacitor
of the AC coupling is reset to zcro.)

ical spline interpolation and the algorithms for calculating both
CSD and intracranial potential maps were described by Junghdfer
et al. (1997). Using spherical splines, data for a rejected sensor
may be interpolated accepting all valid sensors, with the contribu-
tion of each weighted according to its noise level. This interpola-
tion allows estimates [or sensor sites [or which one or several
neighbors are missing. In addition, the global noise level of the
remaining sensor epochs is used to calculate the regularization or
“smoothing™ factor. As described by Whaba (1981} or Freeden
(1981), larger values of the regularization or smoothing factor
indicate a smaller contribution of a singie sensor’s data relative to
the other remaining sensors. A sufficient number of remaining
sensors for aceurate is guaranteed by the minimum threshold {as
described in steps 1.5, and 2.3); otherwise the trial would have
been rejected before this point. Each sensor is weighted according
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Figure 5. Rosults for a typical averaged cvent-related potential with and
without single trial interpolation. The solid line presents the “clean™ aver-
aged data sel wsing all cpochs of all seasors (no interpolation), In the
artificial casc of single trial intcrpolation (dashed line), the {four neighbor-
ing sensors markcd with an aslerisk were totatly rejected. (B) presents the
marked detail view of (A). Diffcrences are minor bul imporiant becausc
they arc cquivalent to the amount of additional spatial information using
high spatial sampling clectroencephalogtaphy.
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lo its signal-to-noise ratio, which is deduced from the histogram
disiributions in the editing matrices in step 2.2.

Figure 4 illustrates a typical interpolation for missing sensor
epochs. The noise-contaminated sensor epochs {marked with an
asterisk} were interpolated trial-by-trial. A trial before (A} and after
(B, detail view) single trial interpolation was chosen 1o illusirate
the effect of channel resetiing (channel 91 in this example), This
example itlustrates how an artifact-contaminated sensor could in-
{luence all other sensors in the average reference transformation.

2.5. Calculate the Standard Deviation Across All
Included Trials
Finally, the standard deviation is computed (for each time point)
across sll of the trials included in the average. In this matrix each
element roughly describes the quality of each time sample in the
average waveform. The standard deviation allows a comparison of
signal quality between differing time poinis or differing sensors.
This comparison could provide a cautionary note for further analy-
sis.” This caution is of crucial significance whenever the topo-
graphical distribution of averaged data is mapped using weighted
spline interpolations. It also allows comparison between different
data sets. Finally. this information on noise levels may help im-
prove the accuracy of source modeling.

Finally, artifacts from subtie yel systematic eye movements
may survive the artifact rejection process and thus contaminate the
averaged ERP. Therefore. specific artifact correction procedures

"The calculation of the global power is such an cxample of the utility
of the standard deviation across trias. The global power g could be weighted
using the inverse standard deviation s (using the values of the matrix of
caleuluicd standard deviations across all trials described above):
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531

should also be implemented, such as subtractive correction proce-
dures (e.g., Elbert et al., 1985) or modeling approaches (Berg &
Scherg, 1991}

To test the accuracy of interpolation against measured data. we
selected four adjacent sensors with good data (no rejected trials) in
a 200-trial visual ERP experiment. We then trealed them as if they
were artifactual, interpolated thern according to the SCADS meth-
odology described above. and compared the interpolations to the
actual data. The overplot of interpolated vs. actual data are shown
for the four sensors (marked with asterisks) in Figure 5A, and in
detail in Figure 5B. Although the interpolation was not perfect,
Figure 5B shows that the waveform was fairiy well reconstructed
even for this large missing region. The fact that the interpolation is
only approximate indicates that sampling with lower sensor den-
sity {e.g., 64 or 32 channels) would not accurately reflect the
spatial frequency of the scalp fields (Srinivasan et al., 1998).

The major advantage of the interpolation method of SCADS
can be emphasized at this point: Averaging of trials without sub-
stiluiing the rejected sensor epochs by interpolated vatues will
result in different numbers of trials per sensor site in the averages.
This methad would produce a temporal and spatial correlation of
signal and noise, which would not be equally distributed across
trials.

Conclusion

By intcrpolating the artifactual scnsors in individual (raw EEG and
MEG) trials of the ERP, the SCADS methodology maximizes the
data yield in dense arry ERP and MEG studies. Furthermore,
SCADS avoids analysis artifacts caused by correlated signal and-
noise. However, this methodology requires both extensive com-
puting and the attention of the experimenter, requiring on the order
of 5--10 min per condition per recording session. This interactive
processing might be automated if a large amount of data of the
same kind are 10 be analyzed. However, the SCADS methodology
clearly requires more experimenter time and computing resources
than the conventional averaging method. This methodology may
not be necessary for experiments such as from university subjects,
most of whom can provide data with minimal artifacts. However,
for experiments that are valuable and difficult 1o coliect without
artifacts, such as from children or clinical populations, the addi-
tional investment may be justified.

Another benefit of SCADS is the statistical information about
data quality, which provides objective criteria for rejection or in-
clusion of the data from a subject. Finally, in the subsequent steps
of surface field mapping and electrical and magnetic source analy-
sis, tlhe SCADS methodology may provide substantial information
on the noise and the variance of the average as well as the average
signal represented by the ERP.
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Abstract

With the advent of dense sensor arrays (64256 channels) in electroencephalography and magnetoencephalography
studies, the probability increases that some recording channels are contaminated by artifact. If all channels are required
to be artifact free, the number of acceptable trials may be unaccepiably low. Precise artifact screening is necessary for
accurate spatial mapping, for current density measures, for source analysis, and for accurate ternporal analysis based on
single-trial methods. Precise screening presents a number of problems given the large datasets. We propose a procedure
for statistical correction of artifacts in dense array studies (SCADS), which (1} detects individual channel artifacts using
the recording reference, (2) detects global artifacts using the average refevence, (3) replaces artifact-contaminated
sensors with spherical interpolation statistically weighted on the basis of all sensors, and {4) computes the variance of
the signal across trials to document the stability of the averaged waveform. Examptles from 128-channel recordings and

from numerival simulations itustrate the importance ol carefol artifact review in the avoidance of-analysis errors,
Descriptors: Muliichannel, EEG, MEG, Event-related potentials, Averaging, CSD

In receni years it has become evidenmt that accurate recording of
electrical or magnetic brain fields often requires adequate spatial
sampling to.avoid.spatial aliasing (Tucker, Liotti, Potts, Russell, &
Pasner, 1994; Wikswo, Gevins, & Williamson, 1993}. Dense sen-
sor array eleciroencephaiogram (EEG) systems (64-256 channels)
are now used in many laboratories. Estimates of the spatial Nyquist
frequency' of the human EEG and- averaged: event-related: poten-
tial (ERP) suggest that an intersensor distance of 2-3 cn is re-
quired to achieve adequate spatial sampling (Spitzer, Cohen,
Fabrikant, & Hallett, 1989; Srinivasan, Tucker, & Murias, 1998).
With an even distribution of-sensors across the head- surface, a
sampling density of less than 3 cm requires 128 sensors, and a
density of less than 2 cm requires 256 sensors (Tucker, 1993).
Similarly, magnetoencephatogram (MEG) systems have been scaled
to whole-head coverage, and may now measure from 122 10 143
sensors at a time and twice as many in the near future. Both the

Rescarch for this sludy was supported by the Deutsche Forschungs-
gemcinschail.
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'The recorded potential across Lhe scalp can be described by its spatial
fieguoncy. wirelhrreflocts the- varialion i the-sighed across the-head-surfaco.
As is truc of sampling in time domain. the sampling raic has to be at lcast
twice the highest-appearing frequency in the measurement. In the casc of
spatial [requency, use of g spatial sampling ratc (scnsor density) less than
the Nyquist frequency Icads to spatial aliasing.
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correctness of the scalp topography and the localization of neural
generators depend on a sufficient spatial resolution (Junghéfer,
Elbert, Leiderer, Berg, & Rockswroh, 1997; Tucker, 1993).

However, recording from dense amrays presents new prob-
lems for data acquisition. Although many creative theoretical
approaches and some empirical studies have been advanced for
the probiem of electrical or magnetic source analysis, ihere has
been little aitention to the problems of statistical management of
data quality in multichannel EEG and MEG systems. The results
of topographical analysis as well as source analysis depend
strongly on the guality of the data of“each sensor that enters the
analysis. The likelihood of errors due to noise or other artifacts
increases with the number of sensors. If, in a given trial, arti-
facts are restricted to & few sensors, the trial still contains valu-
able information. However, simply removing the artifact-
contaminated sensors from ihe average will inwroduce a specific
class of errors. We propose a method for averaging rultichannel
in high-resolution data acquisition, {2) minimizes errors of to-
pography, current density analysis, or source localization due to
missing sensors, and (3) provides statistical information about
the- data- quality. for each- channel in- the- arvay:

ERP analysis lypically begins with a three-dimensional matrix
(trial X sensor X time) EEG, , , with n denoting the number of
trials or recording epochs, s the number of sensors, and ¢ the
number of ime samples within a trial. Although we focus on
electrical recordings in the present report, a similar structure is
used for evemi-related MEG analysis. Data processing then com-
prises the following steps:
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« First, the influence of exiraneous noise resulting from movement
or sensor (2lectrode) artifacis is controlied by rejecting epochs
with large amplitudes. A criterion is set such that within a given
epoch » and for a given sensor 5 the range of data points EEG,, ,
for all time points ¢+ does not exceed a predefined absolute am-
plitude (for the EEG, for instance, a range of 100 uV is sug-
gested: Elbert, Lutzenberger, Rockstroh, & Birbaumer, 1985). In
case of violation. ol this requirement. the data. vecorded. {rom. a.
particular sensor will be declared as artifact contaminated for
that particular trial.? If this problem recurs frequently in a given
data set, the rejection strategy may be elaborated as follows: (a)
If data of one or several identified-sensors tum out to be of poor
quality throughout a significant portion of the N trials, these
sensors will be rejected completely from further analyses (from
all trials). (b) Alematively, an EEG,,. epoch is rejected entirely
il'a significant portion of the § sensors turns out to be artifact
contaminated.

Second, artifacts from eye movements and blinks, as determined
by periorbital eiectrooculogram (EOG) channels, are detected.
Trials with artifacts may be rejected, or algorithms may be used
to subtract the ocular artifact from the EEG channels (as de-
scribed. for instance, by Berg & Scherg, 1991; Elbert et al.,
1985).

Third, the remaining trials are averaged for each sensor and the
resulting averaged ERP is then analyzed further.

Although this procedure is commonly used, the sefective elim-
ination of artifactual trials or channels has significant drawbacks,
particutarly when applied to dense array dala;

« First, if a sensor is noise contaminated in some but not all trials.
the caperimentcr has to- decide- whether the rcjcction. of that
particular sensor, or the rejection of the noisy trials, will be
appropriate. Often this decision is based on a rule of thumb that
is not 1ailored 1o the specific data set: For example, if more than
20% ofthe sensors on a triaf are noisy reject the wial; otherwise
reject the data (rom individual sensors. Both trial and individual
sensor data rejections result in a loss of signal information, and
both actions may introduce a bias into the results.

Second, according to the “all or none™ excessive amplitude rule,
that is, that a given amplitude range should not be exceeded at any
sensor during a trial, all trigls for which this criterion is not met
will be rejected irrespective of how many sensors are problem-
atic. Furthermore, because they have diflerent positions in rela-
tion to skull conductivity and brain sources, different EEG sensors
have different EEG signal amplitudes. This will result in different,
background EEG amplitudes, depending on their distance [rom
the reference sensor, and this background EEG is considered the
“noise” in ERP averaging. Artifactual amplitudes thus summate
with ditferent EEG amplitudes: for-diTerest- channels.
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* Third, once averaging has been accomplished, no statistical in-
formation about the noise level for particular sensors, or about
the set of measurements as a whole, is available. As a conse-
quence, data sets with different noise levels are compared within
one statistical procedure. The lack of noise information limits the
power of inverse source modeling methods such as the least
squares (Press, Flannery, Teukolsky, & Vetterling, 1986), chi-
square, maximums-likelihood (Sikihara, Ogura. & Hotta, 1992},
or minimuni-norm methods {Himildinen & limoniemi, 1984).
All these techniques can make good use of information on noise
heterogeneity.

The crudeness of artifact screening and signal averaging con-
trasts with the effort that is invested in further data analysis, such
as. MBl-consirained. spurce modaling with realistic head. models.
Empirical research (Braun, Kaiser, Kinces, & Elbert, 1997) has
shown that the accuracy of current source modeling is highly de-
pendent on the noise level of the data.

" Overview

Therefore, we propose the following method. for statistical control.
of artifacts in dense array studies (SCADS). The analysis requires
two passes at the data, the first with the data kept in the recording
reference, and the second with the data transformed to the average
reference.

The first pass detects and rejects artifaciual channels, in the
recording reference (e.g., vertex referenced), to avoid contamina-
tion of all channels by the artifacts when transforming EEG data to
the average reference. The average reference is computed by sub-
tracling the potential average across all § sensors at one point of
time from each single sensor potential at this point of time. There-
fore artifacts of single sensors will contaminate the average refer-
ence (and thus all other sensors) by a factor of 1/5.* Once this pass
is complete, the average reference may be computed to allow
accurate topographic mapping and topographic waveform plots.
An-accuralc- average- reference. is uaigue-to-densc-amay. studics. It
requires a minimum of 64 channels. distributed to the inferior head
surface as well as the top of the head (Junghéfer, Elbert, Tucker,
& Braun, 1999; Tucker et al., 1994},

Some EEG analysis methods, such as source localization pro-
cedures, do not require transformation Lo the average reference
(because the reference site may be modeled explicitly}. In these
cases, or in case of MEG data (which does nat require a reference),
the first stage can be omitted as it will be repealted in the second
pass.

In the second pass, based on the average reference, global
artifacts. may. be more clearly. identified because the reference
bias has been removed. Individual artifactual sensors that were
identified in the first pass may be interpolated and replaced to
complete the dataset and avoid ihe biases introduced by missing
data.

*lFor the sake of clarity, the torm sensor will be used from here on,
referring 1o SQUID {supcrconducting quantum interference device) sen-
sots in MEG and clectrodes in CEG recordings. For EEG recordings, it is
important (0 remember that cach channgi is comprised of the scalp polen-
lial Ficlds asscsscd by two scnsors, one typically considered to be the
reference, and that there are no privilcged reference sites on the head whene
the, patcntial remains constant acmss time, In this discussion, we assime,
the recording is with a commen refcrence {rather than different bipolar
¢lectrodes Tor cach channel).

3Scnsors with artifactlually attenuated signals, such as #114 in Figure 1,
would be hard (o detect after the ransformation to averaged reference, as
they then would include the signal at the reference location {(appropriatcly
cstimated as zoro minus the average reference) in addilion (o their own small
signal. 1f such 2 scnsor is distant from the reference, as in the present ex-
umple, it is casily detected as artifact conlaminated because its signal dis-
teitmtion differs from those of the neighboring sensors. 1F, however, a seasor,
is positioned adjacent Lo the relerence, its signal deviation may go undetecied,
whilc slill gencrating distortions of the spatial potential distribution.
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Procedure

After onllining the steps of the analysis procedure, we will de-
scribe each in detail.

1. First Pass--Based on the Recording Reference:

L.1. Filter, thereby attenvating or removing artifacts in frequency
bands that are not of interest for the analysis,

1.2, Construct editing data matrices;

1.3, Deteet and.rejeet consistently. contaminated.- sensors {i.c., scn-
sors exceeding a crilerion of contamination thvoughout the
experimental session);

1.4. Reject. contaminated. sensors in. specific trials (to avoid the
contamination of entire epochs when wansforming io average
reference);

I.5. Transform the edited data to average reference (to minimize
the dependence of signal and noise amplitudes on the distance
between the sensor and the chosen reference site).

2. Second Pass---Based on the Average Reference:
2.1. Construct editing data matrices (as step 1.2);

2.2. Determine and reject contaminated sensors in specific trials
{based on.the given editing matrices);

2.3, Reject contaminated trials;

2.4, Average the remaining epochs, using inlerpolated values for
distinct contaminated sensors (to avoid a different number of
averaged epochs [or different sensors):

2.5. Compute the standard deviation across all trials included in the
average.

1. First Pass Based on the Recording Reference

1.1, Filter
The decision to reject a given trial from the average should pro-
ceed after bandpass filtering within the frequency band of interest.
For ERP studies, retention of near-DC variation is usually pre-
ferred because slow brain potential changes may be meaningful,
and higher frequency information related 1o sensory potentials may
also be important, It is therefore best to record with a broad band-
pass {e.g., 0.01--100 Hz}, then filter digitally, such as with a band-
stop or notch to filter out the 50- or 60-Hz main power line.
The filler can be applied before segmentation of the ongoing
stream of data into trials. If trials are filtered, any artifact produced
by a fixed filter length must be minimized or subtracted from the
beginning of the trial, Stimulus artifacts, such as from an electrical
stimulus, must be removed before filtering. Otherwise, digital fil-
tering will temporally smear the artifact, making its removal more
difficult.

L.2. Construct Editing Matrices

Editing data matrices are constructed to remove or correct sensors
that are artifact contaminated. For this matrix construction, the
maximum absolute value over time. the standard deviation over
time and the maximum of the gradient of vatues over time (first
derivative) are determined for every epoch. These three parameters
display diflerent sensitivities for specific artifacts. For instance, a
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sensor thal is noisy throughout the entire epoch may produce nor-
mal amplitude values, whereas the noise contamination wouid be
apparent in the standard deviation. Furthermore, transient artifacts
may becomne obvious only from examining the first derivative.

Three N X § data matrices M are produced with elements m,,
for the mh epoch or wial at the sth sensor. The elements m,, of the
first matrix contgin the maximal absolute value of the sensor s and
the trial n over time. The second. matrix comprises. the standard.
deviations across the irial time interval. The third matrix describes
the maximal temporal gradient. If the time interval of interest does
noi correspond to the entire trial interval, for example, the analysis
targets only the first part of"a recorded-epoch, the calculation of'the
elements m,,, should be based on the targeted time imterval to avoid
rejection of trials or sensors because of artifacts occurring in non-
targeted time segments. Moreover, it might be necessary to ex-
clude a distinct time segment with obvious stimulus-induced or
other experiment-specific artifacts from this calculation o avoid
rejection of trials or sensors just because of this specific artifact.
The editing matrices thus allow a focused screening of the data for
the unique conditions of the experiment.

Additional criteria and matrices can be created. Coherent bio-
logical noise, such as from alpha waves, often poses a problem for
ERP sourcc-modeting. Therofore, alpha. power might be specified
in a further editing matrix in order to identify irials with large-
amplitude alpha waves,

1:3: Detect and-Reject Consisiently Contaminated-Sensors
The parameter ( p) matrices computed in step 1.2 (absotute max-
inmum, standard deviation, and first derivative) are used to deter-
mine contaminated sensors by creating a statistical measure of the
degree and consistency of the artifactual values. A confidence
coefficient is introduced to weight this measure. Medians are used
to avoid the influence of extreme values,

We first calculate the corresponding boundary values for
Limy(p) for each parameter matrix p (Figure 1B):

Lims(p,A) = meds(mediip, ,))

¥
E (m“!.i'(p.v.n) - meds(nfed.i’(PA.fr)))l
=]

A,

> Lime(pA)=d% A,

P+ value of sensor s, trial n, and parameter p {absolute maxi-
mum across time: standard deviation across time; absolute maxi-

mum of firsi derivative across time)
med,y: median across all trials N;
medg: median across all sensors §;

A, confidence coefficient has to be chosen by the user.

Since a = medi{p,,,) is the median across al! trials for a given
sensor, then & = meds(medi(p, )} is the grand median across
these § medians (a fixed value for each of the three param-
eter types p). Therefore, the root-part of the given equation
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s

{a,— &)»?
d is similar to a standard deviation except that 4 is

5.

the median and not the mean across all S median values. The
general form of the equation as a whole resembles a robust (be-
cause it is based on medians) confidence interval, with the confi-
dence coefficient replaced by A, and the SE replaced by a median-
based S£ equivalent.

In computing the confidence intervals for each sensor, a phys-
ical property of the data recorded with respect to a common ref-
erence site must be considered. This property is iliustrated in
Figure 1 A: the sensors close to the reference will measure only a
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smatl potential difference rom the reference site (because there is
only a small amount of brain tissue generaling a voltage dilference
between the index sensor site and the reference site). In the present
example. the vertex sensor (Cz) served as reference. Figure 1A
plots the amplitude (medium of absolute maximumy) at each sensor
site as a function of its polar angle from the Cz reference, which
was defined as zero (the pole). A larger polar angle means more
brain tissue contributing 10 the potential difference, and thus a
larger channel amplitude (sensor site minus reference site poten-
tial). This reference-dependence effect occurs with any (e.g., nose,
mastoid, noncephalic) reference, and the effect can vary in a com-
piex fashion between subjects and experimental conditions (Jung-
héfer et al., in press).
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Figure 1. Removal of arlifact contaminated channcls based on SCADS step 1.3. (A) Each asterisk comresponds 10 an clectrode.
sorted according to their polar (theta) anglc on the abscissa. The z-axis poinis from the center of the head through the referonce
clectrode (in this casc the vertex). The ordinate indicates the noisc level computed as the median across trials of the maximum of
absolute values within a scnsor cpoch. The dashed line shows the least square regression of sccond degree. (B) After subiraction
of the regression function, dala from scnsors that lic above or below the culeulated confidence interval with boundary values
Lim+(p) (upper and lower dashed line} can casily be identified and removed.



SCADS

To remove this effect, and thus equate the confidence intervals
across the recording channels, the sensors are arranged according
to their polar angular distance from Cz and the resulting function
als) is interpolated using a second degree polynomial least square
regression. The original data «ts) are corrected o c{s) by the
resulting spatial dependency b{s), such that c(s) = al(s} — bis)
{see Figure 1B). Now the final confidence interval for each pa-
rameter p can be caiculated:

Lims(p,A) =X A,

If the spatial corrected median across all trials for a given
sensor ¢(s) exceeds the confidence intervals for any of the three
parameters, it would be rejected from the analysis. Based on the
analysis of a large assortment of data sets a p independent value of
A — 2 seems lo be a good choice 1o reject consistently noisy
sensors while keeping daw from sensors that show large signals
that may be just large amplitude ERPs.

Figure 1B tllustrates the confidence interval for an analysis
based on the absclute amplitude maximum (first parameter). Sen-
sors 91 and 114 can be seen to be contaminated by artifacts through-
out the measurement inferval, and are thus candidates for rejection
and replacement by inlerpolation.

Figure 2A illustrates a data set from which only sensor #82
(botiom of sensor array} was rejected compietely.

1.4. Detect and Reject Contaminated Sensor Epochs

In the next step, the individual sensor epochs (i.e., a single sensor
channel s for a single trial ) are removed if the value of one of the
three parameters for the sensor epoch p, , exceeds the following
confidence interval (calculated across all trials for that sensor
chanmnel):

Lim . {p.) = medi{p, )

N
2 (ps..u - me‘iN(P,c.nDz

o]

+ -
Hp N
A’ »~
>td—-d)?
A=l

=dtp, >

med}; median across all trials N of sensor s;
u,: confidence coefficient has to be chosen by the user;

Again a p independent value of 1 = 2 is a good choice to select
sensor epochs with excessive noise content.

L3. Transform the Edited Data to Average Reference

Trials for which Lhe resulting number of sensors with adequate data
is less than a specified threshold are removed from further analy-
sis. This threshold varies (rom experiment to experiment. For a
clinical study of dementia it may be necessary 1o accept data with
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Figure 2. (A} Histogram of the maximum absolule valucs of singls sensor
cpachs calculated for cach scrsor. The user must define interactively the
upper boundary of the amplitude range that is accepted. A total of 480 trials
was distribuled among 12 condilions, 40 wrials cach, The upper limil was
delermined individually per channel (the distribution marked in gray indi-
catcs data [rom the acquisition reforence Cz [129]). Note that dota from
scnsor 82 was removed in step 1.3 of the data processing. The histograms
for the standard deviation and for the largest gradient arc typically similar
to those of the largest amplitudcs. (B) Frequency distribution magnified for
o single channcl. OF the 480 original trials, 29 ane rejocted and 451 (94%)
are accepicd for further analysis.

80 of 128 sensor channels with acceptable data; for a normal study
with weil-trained volunieers it may be possible to require 128 of
128 sensor channels . At this point, the accepled data are trans-
formed 10 the average reference.

2. Second Pass Based on Average Reference

2.1 Consiruct the Average-Referenced Editing Matrices
If step 1.2 is repeated using the average reference data, aniifacts
produced by the relerence sensor can be taken into account. Fur-
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thermore, the dependency of signal and noise power on the dis-
tance from the reference is no longer relevant. All calculations up
to this step are accomplished by an automnatic computer algorithm
without necessity of interactive control.

2.2 Detect and Reject Artifuct-Contaminated Sensor Epochs
Identifying distinct sensors from particular trials should be based
on visual inspection—-in contrast to the autemated detection of the
first stage-- for the following reasons: Because the noise may not
be normally distributed and signat amplitude may not be constant
across the trial, the contour of the frequency distribution of a
sensor does not clearly indicate its noise. However, trials with
abnormal amplitudes can be identified -- as illustrated in Figure 2B
for one sensor selected from the whole-head array in Figure 2A,
Outliers in the distribution typically result from artifacts such as
eye blinks, eye movements, or body movement. The probability of
such artifacts, as well as those resulting from marked drifts, in-
creases with the number of channels and with the duration of the
data acquisition period.

Figure 2B illustrates a frequency distribution of amplitude max-
ima (amplitude histogram) for a given sensor. These are created by
selecting the data point in each trial with the largest absolute
deviation from wero. the eritical upper limit for Ihe amplitude
maxima was chosen based on inspection of the histogram. All trials
with values above this limit {indicated by the dashed line in Fig-
ure 2B) are removed-- in the given example this number amounts
to 29, so that 451 (94%) trials remain for further analysis.

The remaval of individual sensor epochs is illustrated in Fig-
ure 2A. The maximum absolute amplitudes across trials are log
normally distributed, that is, they are skewed toward lower ampli-
tudes. In an interactive manner, the experimenter musl determine
the upper and lower boundaries between which the data are ac-
ceptable. If a distribution is extremely broad or exhibits multiple
peaks, the sensor may be removed completely (alibough such sen-
sors should have been already removed when applying step 1.2 of
the suggested first pass data processing). Under certain circum-
stances, bimodal distributions for some sensors may be observed.
In general, this bimodality could indicate that a sensor—for in-
stance due 1o movemenl---has lost its skin contact in the course of
the acquisition period. This disruption will produce an abrupt in-
crease in noise amplitude. In such cases a good strategy is io define
the boundary amplitudes just above the distribution with the lower
signal amplitudes.?

Boundarics have to be determined for each of the three param-
clers {absolute maximimm, largest standard deviation, largest gra-
dient). We have observed that the standard deviation and temporal
gradient distributions resembie the distribution of the maximum
amplitudes illustrated in Figure 2. Sensor epochs for which one or
more of the three measures is outside of the respective predefined
boundaries are removed {rom further analysis. whereas all others
are included in the average. '

A computerized automatic processing of this outlined step would
be desirable, particularly to standardize the described criteria for
rejection, Automatic processing would also be complex, because

*nspection of Figure 2A points to yet another notewerthy cffect; sen-
sors in the center of the sensor configuration show narrowcer distributions
and smaller amplitudes than scnsors in more infedor regions. This differ-
ence is a consequence of the inadequate sampling from the inferior head
surfaees (Free and neck) that docs nol meet the eritetia for determi ning the
average reference. The cifects of this “polar average reference cileel™ are
discussed in Junghdier ot al. (1998).

M. Junghdfer et ul,

the distributions of the three editing matrices M depend on the
unique characteristics of the signals.’

2.3. Reject Contaminated Trials
To identify trials contaminated by artifacts at many or all sensors.
a histogram of the distribution of artifact-contaminated trials per
sensor is constructed {Figure 3). On the basis of the histogram, the
experimenter determines a lower boundary for trial rejection. This
procedure improves the accuracy of the subsequent sensar epoch
inerpolation.®

With 118 selected as the minimurm number of good sensors pet
trial, of all irials showing more than 10 bad sensors within one trial
are rejected from further data analysis, In the present example, 90
{23%) of the 480 trials are rejected due to ariifacts that affect at
least 11 sensors. Even ifthe boundary for trial rejection is lowered -
for instance to 110 good sensors per trial--only a few more trials
would have been saved for further analysis, all of them with in-

*Though the authors recommend visual inspection (o guide data screen-
ing, the following calculation provides reasonable default values for the
upper threshold for cach sensor s and paramcter 2 Limi, {p,v) =

JN o
max ( f_ﬁm‘ﬁ'—)ﬂ (1o miost cases Linr—(p,)} is the

I Cpal (,P.\‘_f}r):
f Lim A po)=Lim_{p.}

simply the minimum of p..) The root cxpression in the derominator de-
sctibes the standard devialion of ihe given parameter p for onc sensor s
within the interval from the lower o the upper threshold. Because the
signal-lo-noisc ratio (S/N} of the final average increases with the squarc
root of the contributing number of trials N. this ratio incrcases with cx-
pansion of the threshold interval. However, the cxtension of the upper
threshold also leads to a reduction in S/N, because dissimilarity of trials
will increase, The inverse standard deviation function of the parameter
distribution depending on the threshold interval can be uscd o quantify this
§/N decrease. The aim of the overall function is, therefore, to determine
the thresholds that maximize $/N depending on the number of irials with
consideration of trial likelihood. The cocflicient exponent g weights the
importance of trial likelihood in comparison 10 the number of trials and has
to be choscn by the user. We found (.5 to be a reasonable value (o account
for an appropriatc trial variance.

In order 1o take into account the spatial scalp distribution of (he final
upper thresholds (i.c., neighboring scnsors should show similac thresholds),
we calculatc a “threshold deviation value™ for cach sensor. This valuc is the
sum of the “nonlincarly weighted™ differcnees botween each sensor theesh-
old and all other \hresholds. The weighting corresponds roughly to the
inverse of the spatial distance (the spherical angle distance). However,
using spherical splinc interpolation this weighting is not lincar.

Finally, the program suggests rejecting all scnsors for which threshold
deviations [all beyond two standard deviations of the median over all
threshold sensor deviations. 1f based on a large number of irials fic., >
100}, this procedure does not require additional manual editing and could
be used to standardize sensor and trial rejection criteria.

*The simplc choiec of a minimum nutmbcr of intact channicls per trial
(also used in SCADS step 1.5) docs not take into account the spalial
arrangement of the rejected sensors. 1F they arc all in the same region, then
interpolation witl be inadequate for that region. To solve this problem we
would like to havc a parameter that describes the ovemll accuracy of
interpotation. Using ncarest ncighbor interpolation, this parameter could be
the averaged spherical anglc distance from the index sensor (the one 10 be
interpotated) (o the neighboring sensers used for interpolation (scc, o,
Nunce, 1981). This is actuaily the average across alt interpotation weights
{decreasing lincarly with increasing angular distance in the case of the
ncarest neighbor methodt. However, using spherical spline interpolation,
the sensors ate nol lincarly weighted. tn this casc an clegant solution is the
interpolation of given spatial tost functions (actually the spherical spline
functions themsclves based on the given configuration of intact and ro-
jected channcls using the same spherical spline functions chosen for the
following uverage procedure). The accuracy of this inlerpolation depends
not only on the number of rejected channcls but also on their spatial
relations.
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Figure 3. Histogram of a typical distribution of channcls that result rom
SCADS step 2.3. With the given minimum number of good scnsors per trial
of 118, ali trials --90 of the total 480 (23%} - showing |1 or more bad
scnsors within one trial are rejected from further data analysis.

complete sensor sets. In experiments with many trials per condi-
tion, it is desirable to choose a high boundary, because the loss of
wrials will then have a tolerable etiect on the signal-to-noise ratio.
If a distribution with a clear peak, like the one in Figure 3. is not
obtained, the choice of the lower boundary may be based on the
number of remaining trials.

2.4, Average the Artifact-Free Trials with Interpolated Values
Jor the Artificial Sensor Sites

Before averaging the remaining Uials (i.e., all wials with a safli-
cient number of intact sensors remaining at this slep), all sensor
epochs that have been identified above as artifact contaminated are
repiaced by interpolation. The interpolation is achieved with
weighted spherical splines fit to the intact sensors. In contrasl to
nearest neighbor interpolation, spherical splines are fit 1o all re-
maining sensors, such that the influence of each sensor is weighted
nonlinearly by the inverse of its distance to the missing sensor and
by the specific noise level (i.e.. more distant and /or noisier sensors
are weighted less than closer and/or cleaner sensors). This esti-
mation and reconstruction of rejected sensor epochs is of particular
importance to maintaining the accuracy of the dense array repre-
septation. The complete dataset, including the estimated inter-
polated data, may be computed and stored if single-trial analyses
(such as spectral, latency-adjusted averaging, or nonlinear analy-
ses) are desirable. Otherwise, the estimation and reconstruction
can proceed with the averaged ERP epochs.

Accurate surface potential distributions are particularly impor-
tant for estimating radial current source density {CSD) from the
iwo-dimensional (2D) Laplacian of the potential. Assuming no
sources in the scalp, the 2D (surlace} Laplacian is proportional 10
the radial current flow in or out of the skull at the computed point.
The estimation of C5D based on spherical spline interpolation of
EEG scalp potentials was first developed by Perrin, Pernier, Ber-
trand, and Echallier (1989). The calculation of the weighted spher-
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Figure 4. Results for a typical noisc-weighled interpolation of single
scnsor cpochs. The rejected sensors are marked with an asterisk. (A)
The original data sct and (B) the marked detail view of (A) afler single
trial correction. (Channct 91 exhibits the consequences of 2 reset, occur-
ring during the Iriat, in which a scnsor with a large clectrochemical
olfsct cxcecds the input range of the amplifier, and the input capacitor
of the AC coupling is reset to zero.)

ical spline interpolation and the algorithms for calculating both
CSD and intracranial potential maps were described by Junghofer
el al. {1997). Using spherical splines, dala for a rejecled sensor
may be interpolated accepting all valid sensors, with the contribu-
tion of each weighted according to its noise level. This interpola-
tion allows estimates [or sensor sites for which one or several
neighbors are missing. In addition, the giobal noise level of the
remaining sensor epochs is used to caleulate the regularization or
“smoothing” factor. As described by Whaba (1981} or Freeden
{1981), larger values of the repularization or smoothing factor
indicate a smaller contribution of a single sensor’s data relative to
the other remaining sensors. A sufficient number of remaining
sensors for accurate is guaranteed by the minimum threshold (as
described in steps 1.5, and 2.3); olherwise the trial would have
been rejected before this point. Each sensor is weighted according
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Figure 5. Results for a typical averaged cvent-related potential with and
without single rial intcrpolation. The solid line presents the “clean™ aver-
aged data sct using all cpochs of alf scnsors (no interpolation). In the
artificial casc of single trial intcrpolation (dashed linc), the four neighbor-
ing scnzors marked with an aslerisk were totally rejected. (B) presenis the
marked detail view of (A). Dilfercnces are minor bul imporiant because
they arc equivalent 1o the amount of additional spatial information using
high spatial sampling clectrocncephalography.
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to its signal-to-noise ratio, which is deduced [rom the histogram
distributions in the editing matrices in step 2.2,

Figure 4 illustrates a typical interpelation for missing sensor
epochs. The noise-contaminated sensor epochs (marked with an
asterisk) were inlerpolated trial-by-trial. A trial before (A) and afier
(B, detil view) single (rial interpolation was chosen to illustrate
the effect of channel resetting {channel 91 in this example). This
example illustrates how an artifact-contaminated sensor could in-
fluence all other sensors in the average reference transformation.

2.5. Calculate the Standard Deviation Across All
Included Trials
Finally, the standard deviation is computed (for each time point)
across all of the trials included in the average. In this matrix each
element roughly describes the quality of each time sample in the
average wavelorm. The standard deviation allows a comparison of
signal quality between differing time poinis or differing sensors.
This comparison could provide a cautionary note for further analy-
sis.” This caution is of crucial significance whenever the topo-
graphical distribution of averaged data is mapped using weighted
spiine interpolations. It also allows comparison between different
data sets. Finally, this information on noise ievels may help im-
prove the accuracy of source modeling.

Finally, artifacts from subtle yet systematic eye movements
may survive the artifact rejection process and thus contaminate the
averaged ERP. Therefore, specific artifact comrection procedures

"The calculation of the global power is such an cxample of the utility
of the standard deviation across trials. The global power g could be weighted
using the inverse standard deviation s (using the valucs of the mateix of
calculated standard deviations across all trials described above):
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this calculation results in fess noisc, because sensors with low reliability are
weighted less than sensors with high reliability.
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should also be implemented, such as subtractive correction proce-
dures (e.g., Elbert et al.. 1985) or modeling approaches (Berg &
Scherg, 1991).

To test the accuracy of interpolation against measured data, we
selected four adjacent sensors with good data (no rejected trials) in
a 200-trial visual ERP experiment. We then treated them as if they
were artifactual, interpolated them according to the SCADS meth-
odology described above, and compared the interpolations to the
actual data. The overplot of interpolated vs. actual data are shown
for the four sensors (marked with asterisks} in Figure 5A, and in
detail in Figure 5B. Although the interpolation was not perfect,
Figure 5B shows that the waveform: was fairly well reconstructed
even for this large missing region. The fact that the interpolation is
only approximate indicates that sampling with lower sensor den-
sity (e.g., 64 or 32 channels} would not accurately reflect the
spatial frequency of the scalp fields (Srinivasan et al., 1998).

The major advantage of the interpolation method of SCADS
can be emphasized at this point: Averaging of trials without sub-
stituting the rejected sensor epochs by interpolated values will
result in different numbers ol trials per sensor site in the averages.
This method would produce a temporal and spatial correlation of
signal and noise, which would not be equally distributed across
trials.

Conclusion

By intcrpolating the artifactual scnsors in individual (raw EEG and
MEG) trials of the ERP, the SCADS methodology maximizes the
data yield in dense array ERP and MEG studies. Furthermore,
SCADS avoids analysis artifacts caused by correlated signat and
noise. However, this methodology requires both extensive com-
puting and the attention of the experimenter, requiring on the order
of 5--10 min per condition per recording session. This interactive
processing might be automated if a large amount of data of the
same Kind are to be analyzed. However, the SCADS methodology
clearly requires more experimenter time and computing resoutces
than the conventional averaging method. This methodology may
not be necessary for experiments such as from university subjects,
most of whom can provide data with minimal ariifacts. However,
for experiments that are valuable and difficult 1o coliect without
artifacts, such as from children or clinical populations, the addi-
tional investinent imay be justified.

Another benefit of SCADS is the statistical information about
data guality, which provides objective criteria for rejection or in-
clusion of the data from a subject. Finally, in the subsequent steps
of surface field mapping and clectrical and magnetic source analy-
sis, the SCADS methodology may provide substantial information
on the noise and the variance of the average as well as the average
signal represented by the ERP.
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