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o 6L, Some computational and statistical techniques that can be used in the analysis of event-related po-
s, A, tential (ERP) data are demonstrated. The techniques are fairly elementary but go one step further than
aphy of do simple area measurement or peak picking, which are most often used in ERP analysis. Both ampli-
+f three tude and latency measurement techniques are considered. Principal components analysis (PCA) and
i error. methods for alectromyographic onset determination are presented in detail, and Woody filtering is dis-
i4-264. cussed briefly. The techniques are introduced in a nontechnical, tutorial review style. One and the same
2 com- existing data set is presented, to which the techniques are applied, and practical guidelines for their use
?}‘ffl’; are given. The methods are demonstrated against a background of theoretical notions that are related
CLIER. 1o the definition of ERP components.
lation.
75-81. The electroencephalogram (EEG) is the record of the ERP components may be exogenous or endogenous—
PPELL. potential differences between electrodes placed on the that is, evoked by events that are extrinsic or intrinsic to
:-e,:; {human) scalp. EEG records can be classified into two the nervous system. The exogenous ERP components 0C-
i j categories: the spontaneous of background EEG and  cur near the cliciting event. and the time relation to that
nentia.  § event-related potentials (ERPs). The background EEG  event is very stable. Whena stimulus is presented, for in-
relate consists of periodic voltage fluctuations, which can be  stance, the exogenous ERP components have an early
vk : classified according to their frequency content—for in-  onset latency-—that is, they occur within 250 msec from
DAL stance, alpha (8-12 Hz), beta (13-30 Hz), gamma (31— the presentation of the stimulus, and that latency does not
wk: Ox- 4 50 Hz), delta (0.5-4 Hz), and theta (5-7 Hz). ERPs are  vary much from trial to trial. The same can be said about
‘ al discrete waveforms that are associated with an event.  exogenous components that are related to the occurrence
f"{; 3ﬁ§g' They are hidden within the background EEG and are vi- of a response, although these relations have been less
orr. B sualized by averaging discrete EEG epochs that are syn- systematically studied. The characteristics of the exoge-
nterpo- - chronized to meaningful task eyents,_such as the presen-  NOUS components, such as amplitude and latency, depend
ctroen- 4l tation of a stimulus or the occurrence of a response. Since  only ‘on the physical parameters of the eliciting stimu-
ki the background EEG is not assumed to have a temporal lus—for instance, pitch or loudness, in the case of audi-
's[_‘;';;‘g‘;’ . relationship to the synchronization gvent, averaging of  tory stimuli. Examples of endogenous ERP components
T discrete EEG epochs will, when a sufficiently large num-  are the P300—a positive peak at about 300 msec after a
-ing the k. ber of epochs (trials) are averaged, result in its attenua- stimulus—and the slow potentials, which are recorded
ads, In- tion. The activity that does havea temporal relation to the preceding movementor during other mental activities. In
T ' event—the ERP—will then be enhanced in relation to the contrast to the exogenous components, endogenous ERP
g fhe o background EEG and thus become visible. 1f plotted in  components have a later and more variable onset latency,
pplica- 4 time, ERPs appearas a series of positive and negative de- and their characteristics do not depend, or only partially
flections, which are thought to be the manifestation of depend, on stimulus parameters. The endogenous ERP
ipoten- underlying ERP components. components *“are invoked by the psychological demands
2512 of the situation rather than evoked by the presentation of
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stance, in the work of Pfurtscheller and colleagues on the
event-related desynchronization (ERD; see Pfurtscheller
& Klimesch, 1991, for a survey)—in which specific fre-
quencies of the background EEG are related to evenis—
is difficult to make. Likewise, the distinction between ex-
ogenous and endogenous ERP components is not always
very clear, most notably in the time range between 100
and 300 msec poststimulus. Yet the distinctions have
heuristic value and can guide ERP research in practice.

The present paper is concerned with some of the meth-
ods that are used to study the latent endogenous compo-
nents from the observed ERPs measured at the scalp and
is focused on their application in experimental psychol-
ogy. ERPs are now considered by most experimental
psychologists to be a useful tool in the study of various
psychological research questions (Meyer, Osman, Irwin,
& Yantis, 1988). The most important contributions of
ERPs to experimental psychology are believed to be in
the evaluation of information-processing models, in men-
tal chronometry, and in situations in which continuous
measures are required or in which no overt response is
availabte. The popularity of the ERP technique in exper-
imental psychology is pleasing, since it is indicative of a
certain degree of maturity in the ERP field. It demon-
strates that the field has developed from a stage in which
primarily research into the functional significance of the
ERP components themselves was done to a stage in
which this knowledge is sufficiently large to be applied
in various settings. At the same time, care must be taken
to ensure that the methodological principles underlying
the measurement and identification of ERP components
are observed. The application of ERPs in experimental
psychology will only be successful if these principles,
which are the result of a lot of research in the previous three
decades, are carefully pursued. Therefore, this paper re-
Herates some of these basic methodologioal principles
and assumptions. It is mainly concerned with the issue of
how psychophysiological measurements, in particular
ERPs, can be reliably decomposed into psychologically
meaningful components and with some of the statistical
and computational techniques that may be used for that
purpose. The paper is by no means complete, and, at ap-
propriate places, the reader is referred to other papers for
more detail.

THE DEFINITION OF ERP COMPONENTS

An example of an ERP recorded from six electrode
sites is given in Figure 1. The data are taken from an ex-
periment in which 10 subjects were engaged in a choice
reaction time task with a constant foreperiod of 4 sec de-
marcated by two stimuli (van Boxtel, van den Boogaart,
& Brunia, 1993). As soon as possible after the second
stimulus, the subjects had to squeeze a response button
with the thumb and the index finger of the right hand up
to 15% of their own maximum force. They had to reach
that force criterion cither as quickly as possible or about
twice as slowly (factor response speed). The information
about the required response speed on a particular trial

was presented at either the first or the second stimulus
(factor instruction stimulus). Figure 1 shows the ERP
traces of fast and slow contractions in both conditions,
starting from 0.5 sec before the second stimulus, until
2 sec thereafter.! Note that, contrary to conventions in
other research areas, negativity is piotted upwards and
positivity downwards in this figure, as is often done in
ERP research. Donchin et al. (1977) estimated that two
thirds of the researchers used the negative up convention,
and a quick survey of recently published articles sug-
gests that this number has not changed dramatically
since then.

Visual inspection of Figure 1 reveals two positive de-
flections. The first peak has a latency of about 400-
500 msec after the stimulus, a parietal or centroparietal
maximum, and it seems to vary asa function of instruc-
tion stimulus, irrespective of response speed. The sec-
ond peak has a latency of about 700800 msec, a central
maximum, and seems to vary

inspection of Figure 1 suggests that there are two inde-
pendent waves—the first related to the processing of the
stimutus and the second related to the execution of the
response. The order in which these phenomena occur is
in agreement with the predictions of serial stage models
of human information processing.

This data set will be used throughout this paper to il-
lustrate the theoretical notions and computational tech-
niques that will be discussed. The first important distinc-
tion that needs to be made is the difference between a
component, on the one hand, and a peak, deflection, ot
waveform, on the other hand. In Figure 1, for example,
the two large positive peaks that can be seen after the re-

spond stimulus are the dependent variables of the exper- o

iment, which can be seento vary as a function of the in-
dependent
and response speed. Peaks such as these are usually de-
fined observationally on the basis of obvious character-
istics of the deflection, such as sequence, polarity, and la-
tency. For example, one might be interested in the first
(sequence) positive {polarity) deflection in the interval
between 200 and 600 msec (latency) after the stimulus.
One might then take the most positive value in that in-
terval for alt electrodes, conditions, and subjects (a peak
measure) and submit these values to statistical analysis.
Alternatively, one might integrate or average the voltages
in a certain time window (an area measure), a method
which is less sensitive to noise than is the peak measure,

as a function of response i
speed, irrespective of instruction stimulus. Hence, visual
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variables—in this case, .instruction stimulus. «.
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but which may also underestimate differences between
electrodes, conditions, and subjects. Fabiani, Gratton,

Karis, and Donchin (1987} provided an excellent survey.;ﬁ‘

of the observational definitions of ERP components—of '

operational definitions, as they prefer—and discussed

the advantages and disadvantages of several widely used =
methods in the context of the P300.

The nomenclature used for observationally defined
ERP waveforms has vsually been based on polarity and
sequence or on polarity and latency. Under the first con- &
vention, the first small peak—which, in Figure 1, canbe ;

e

1

b




im'-‘ -
€

itions,
;, until
1ONS in
ds and
lone in
1at two
ention,
es sug-
itically

tive de-
it 400-
sarietal
nstruc-
he sec-
central
:Sponse
. visual
y inde-
cof the

of the
ceur is
nodels

1 to il-
al tech-
dis*’
Wt .
“tion, or
vample,
t the re-
& exper-
f the in-
-timulus,
ally de-
aracter-
y, and la-
the first
interval
nimulus.
that in-
,(a peak
1nalysis.
voliages
method
neasure,
between
Gratton,
at survey
2nts—or
iscussed
ely used

defined
rie 4
s -
,can be

Synchronized to the stimulus

—— Instruction at S2, Fest

—— Instruction at Si, Fast

1s

METHODS FOR ANALYZING ERP DATA 89

——

Instruction at S2, Slow

——- Instruction at S1, Slow

Figure 1. ERP traces from the four instruction stimulus by response speed combinations, averaged over
10 subjects. The synchronization point that was used in averaging was the respond stimulus, of which the
occurrence in time is indicated by a vertical line in each set of traces from one electrode position (data are

from van Boxtel, van den Boogaart, & Brunia, 1993).

seen to occur just after the stimulus, especially at the
central and parictal electrodes—would be desi gnated by
P1, which is followed by N1, P2 (the large positive peak),
N3, and P3. Under the second convention, these peaks
could be described as P200, N300, P500, N650, and P800,
for example. Either system has advantages and disad-
vantages, and the enormous variability in ERP waveforms
under different experimental conditions makes it diffi-
cult to generally prefer one system over the other. Don-
chin et al. (1977) recommended the use of the polarity and
latency convention, taking the modal or mean latency when
describing data from a number of conditions and subjects.
Their recommendation is followed by most researchers
nowadays, and, in the present paper, the two positivities
will also be denoted by P450 and P750, respectively.
Table 1 exhibits the statistical effects of peak and area
measures taken from the two positive deflections in Fig-
ure 1, P450 and P750, and shows some of the weaknesses

and limitations of the peak and area measures. Some of
the obvious effects seen in the average ERP traces shown
in Figure | are not supported by the statistical tests, even
though visual inspection of the individual ERP traces of
all subjects suggests that these effects are present in all
subjects to a certain degree. It is therefore unlikely that
the reason for the difference between the visual obser-
vation and the statistical results is in a large between-
subjects variation that results in small £ _ratios. It is more
likely that the time window from which the measures
were taken had to be large in order to encompass the la-
tency variation from subject to subject, with the side ef-
fect that the experimental variation of the P750 was for
a large part included in the P450, especially when the
area measure was taken.

In contrast to a peak or deflection, the term compo-
nent should be reserved to denote a theoretical construct
rather than an observed waveform. This theoretical en-
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Table 1
Main Effects and First-Order Interactions of the MANOVA
on Area and Peak Measures of the Data Depicted in Figure 1

F Values
Area Measure Peak Measure
Effect df I 2 1 2
Instruction stimulus (8) 1,9  11.22¢ 2.79 11.05t 1.48
Response speed (R) 1,9 7.76*  1.76 24.12¢  7.07*
Electrode position (E) 2.8 2,71 0.58 1.89 002
Hermisphere (H) 1,9 7.55%* 9.65* 10,55+ 4.03
SXER 1,9 2.66 0.49 162 014
SXE 28 6.41* 0.27 336 1.03
SXH 1,9 0.00 030 060 0.19
RXE 2,8 0.37 1.03 1.35 158
RxH 1,9 1.04 0.76 305 020
ExH 2.3 1.42 3.07 .52 2.06

Note—The analyzed intervals were 200600 msec after the stimutus for
the first peak and 600-1,000 msec for the second. For the peak measure,
the most positive value found in each of these intervals was taken; for
the area measure, the mean of those intervals was computed. *p < .05.
tp< 0l

tity 1s believed to represent “some essential physiologi-
cal, psychological or hypothetical construct whose prop-
erties are under study” (Donchin et al., 1977, p. 10). The
confusion between the observational and theoretical de-
finitions stems from the fact that the theoretical P300 may
observationally appear as P250 or P400. Therefore,
Donchin et al. (1977) proposed to make this distinction
clearer by using an identifying mark whenever the theo-
retical rather than the observational definition is in-
tended. Thus, “P300 would refer to the theoretical com-
ponent which might observationally appear as P350™
(p. 11). This suggestion has never really caught on, how-
ever, but it does remain important to distinguish the ob-
servational from the theoretical definitions. For the pre-
sent data set, the related questions would be whether the
P450 is a manifestation of the stimulus-related P300 com-
ponent originally discovered by Sutton, Braren. Zubin,
and John (1965} and the P750 a manifestation of the re-
sponse-telated reafferent potential described by Korn-
huber and Deecke (1965).

The ERP deflections recorded on the surface of the
scalp are the result of volume-conducted electrical ac-
tivity that is generated in various brain areas during task
performance —mainly postsynaptic potentials from large
neuronal populations (see, e.g., Caspers, Speckmann, &
Lehmenkiihier, 1980). According to some authors, the
theoretical definition of ERP components is based only
on these underlying neuronal generators (see, e.g., Sams,
Alho, & Naitanen, 1984). Most authors, however, agree
with the notion, most clearly expressed by Donchin et al.
(1978), that the theoretical definition of ERP compo-
nents must also be based on its function—-that is, its re-
lation with experimental variables. These authors recog-
nized that the scalp-recorded ERPs are produced by what
they called different neuronal aggregates, but they went
on to note that “Functionally distinct aggregates need not
be anatomically distinct neuronal populations. But it is
assumed that neuronal aggregates whose activity will be

represented by an ERP component have been distinctly
affected by one or more experimental variables” (p. 353), &
Hence, they define components not on the basis of peakg.:
or troughs in the waveform but on the basis of experi-
mental variation, using the adage “4All we can study is tha
which varies” (p. 354). ks
The difficulty with neuronal generators as a defining .7
attribute of ERP components is, of course, that they should
be determined every time the definition is applied. For in-
stance, if the neuronal generators were included as a de-
fining attribute for the P300 component, every study us-
ing the oddball task would necessarily include some
method for defining these generators, such as equivalent -
dipole modeling, a PET scan, or a similar technique. Oth.
erwise, the criteria for concluding that a P300 was mea-
sured would never be fulfilled. It is clear that, even though ...
the neuronal generators of the component may be the ...
fundamental entities ultimately of interest, this is not
practical. With the recent availability of recording sys- ;3
tems with which the activity of high numbers of elec- !
trodes can be sampled at once and the development of ‘
sophisticated source localization and imaging tech-
niques, it can nevertheless be expected that the neuronal
generators, or at least the scalp distribution, of ERP com-
ponents will become increasingly important in psy- f
chophysiology-—not as a defining attribute maybe. but '
at least as an aid in distinguishing between ERP compo-
nents and arriving at a more fine-grained level of de-
scription. A nice illustration of this approach was recently
given by Donchin, Spencer, and Dien (1997), who made #
a distinction between the classical (“Suttonian™) P300
and the Novelty-P300 based on the scalp distribution by~
spatial principal components analysis. '

PRINCIPAL COMPONENTS ANALYSIS :
An important yet fairly simple method that can be used
as an aid to infer the existence of theoretical components
from observed waveforms is principal components analy-
sis (FCA). PCA is one of the techniques usually sub-
sumned under the general label of factor analysis.? The
techniques are intended to describe the complex relations 3
between a large number of variables and to describe these -
variables in terms of a lesser number of hypothetical, un- *®
observed, latent variables. PCA differs from other factor- =
analytic techniques in that the factors extracted (termed &
principal components) are closely related to the original 4
dependent variables, which is not necessarily so in othe
techniques. In PCA, each principal component is simply
a weighted linear combination of all the original depen
dent variables, and, theoretically, as many principal com-il
ponents may be extracted as there are dependent vari- =%
ables. Furthermore, the principal components are extracted %
from the data set in a hierarchical fashion: The first com- =
ponent accounts for the largest proportion of the vari- .
ance in the data, and the successive components must be
both orthogonal to the preceding ones and account for
the largest portion of the residual variance. For typica
ERP data, this percentage drops off rapidly after the firs
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five or six components, which usually account for 90-95%
of the variance in the data.

Besides reducing the often huge amount of data that is
usually collected in typical ERP measurements, the prom-
ise of PCA is that it gives insight into the unobserved,
theoretical components from the observed measure-
ments recorded at the scalp. The use of PCA as a tool for
the study of ERPs was advocated by Donchin (1966). Tu-
torial reviews of the use of PCA for ERP data are given
by Chapman and McCrary (1995}, Donchin and Heffley
(1978), and Glaser and Ruchkin (1976), among others.
The way in which PCA is most frequently used is to
arrange the recorded ERPs so that the successive time
points of the single ERPs are treated as variables in the
PCA program (often a statistical package such as SAS,
SPSS, or BMDP). The different ERPs, recorded from the
single electrode positions, experimental conditions, and
subjects, are treated as cases (observations). For instance,
in the data shown in Figure 1, there were 2 sec after the
stimulus, and the sampling rate was 200 Hz, so there would
be 2 * 200 = 400 variables. Data were recorded from six
electrode sites (F3, F4, C3, C4, P3, and P4), during two
contraction speeds (fast, slow), under two experimental
conditions (instruction at S1 or instruction at S2), and
from 10 subjects. Hence the number of cases would be
6*2%2 %10 =240

This procedure may be referred to as a temporal PCA,
in contrast to a spatial PCA, which will be briefly dis-
cussed later. The basic model for the temporal PCA—for
simplicity, without electrodes, experimental conditions,
subjects, and error—is given by:

K
x(t)= Y ape, (1), 1)
k=l

where ¢ are time points (1, ... T}, and & are components
(1, ... K). The equation is given here t0 show that the ob-
served ERP waveform, the x(¢)—which, as indicated by
the (¢). is time-variant—is conceived of as a linear com-
bination of time-invariant and time-variant variables (the
a; and c,{t), respectively). The result of the PCA is a set
of X time-variant component loadings, which represent
the contribution of each component to the voltage at each
time point, and a set of time-invariant component scores,
which represent the contribution of each component to
each of the ERP waveforms. That is, the component load-
ings are the basic waveforms, indicating the instants in
the ERP in which amplitude variability exists, and the
scores indicate the nature of that variability that can be
analyzed by the usual statistical techniques, such as
analysis of variance.

The PCA technique will be demonstrated with the use
of the data set presented in Figure 1. A number of im-
portant choices that have to be made in the course of the
application of the PCA will be discussed, and some use-
ful suggestions for optimizing the results will also be
given. However, before doing so, one important aspect of
PCA should be stressed: PCA is a correlation technique.
This implies that researchers have to be careful in giving
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a causal interpretation to the results obtained. The ex-
tracted components cannot directly be interpreted as
anatomical, physiological, or even psychological enti-
ties. PCA just analyzes and describes variance in the ob-
served data. For this and for other reasons, some of which
will be discussed below, the use of PCA as a tool for an-
alyzing ERPs has also been criticized. Most, if not all, of
these criticisms have been sufficiently repelled to justify
its use, but PCA should in no way be viewed as a kind of
magic tool. It should rather be viewed as just another way
of analyzing multichanne} data, like simple peak picking,
albeit a technique with some notable advantages over
some other methods that are often used,

Number of Variables

The time interval to be analyzed may be constrained
by practical limitations, the most important of which is
the number of variables (time points). Some PCA pro-
grams have an upper limit on the number of variables they
can handle, often related to the particular computer soft-
ware or hardware at hand (particularly the availability of
memory). A maximum of about 100 variables is not un-
common for typical personal computer configurations.
In addition, the number of variables should be less than
the number of cases (observations). Although most PCA
programs nowadays allow the number of variables to be
larger than the number of cases, the reliability of the PCA
increases with the number of cases. In the present exam-
ple, there were 400 variables and 240 cases, so either the
time interval should be shortened, or the number of vari-
ables should be reduced by down sampling (i.e., picking
an equally spaced number of samples from the data set).
Since it is nndesirable to limit the time interval before
the first PCA has even been calculated, the second method
is preferred.

The number of variables in the present data was re-
duced from 400 to 50 by calculating means of 8 succes-
sive time points. This method was used, instead of sim-
ply picking every eighth point, in order to avoid aliasing.
Aliasing occurs if the cutoff frequency of the low-pass
filter used in data collection is more than half of the sam-
pling frequency (see, e.g., Srinivasan, Tucker, & Murias,
1998). Condensing by a factor of eight means down
sampling from 200 to 25 Hz, and the present data were
low-pass filtered at 30 Hz. Hence, a low-pass filter of a
maximum of 12.5 Hz should be applied to the data be-
fore selecting every eighth point (see Ruchkin & Glaser,
1978, for simple low-pass filters in software). Taking the
mean of § consecutive time points is just another way of
low-pass filtering the data, and is often computaticnally
faster. Downsampling by a factor of eight is justified be-
cause the components of interest are all expected to have
a frequency content well under 10 Hz, and it makes the
dimensions of the data matrix (50 time points by 240
cases) reascnable.

Baseline Level
Because the EEG does not have a natural zero level, at
least in behaving subjects, an artificial baseline is calcu-
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lated. Often the mean of an interval of up to | sec before
the stimulus is taken and subtracted from all the succes-
sive time points to be analyzed. Wastell (1981a) argued
that this common procedure leads to the extraction by
PCA of a first or second component exhibiting high load-
ings toward the end of the analyzed time interval. Such
a component, which is the result of the autocorrelated na-
ture of the data, is shown in Figure 3 (Component 1}. Its
component scores usually do not show any meaningful
statistical effects. The probability that such a “spurious™
component will be extracted is reduced by DC removal,
either by correcting the total time interval of each indi-
vidual ERP (case) to zero microvolts or by setting the
mean of al cases (electrodes and conditions) of one sin-
gle subject to zero. The latter two procedures generally
produce similar results. If the zero baseline level is not
situated at the beginning of the analyzed time interval,
the first component extracted will usually reflect the ex-
isting baseline differences. Wastell noted that even in
such cases PCA tends to extract companents in the order
of their frequency content—that is, first the components
that vary slowly over time, followed by the faster com-
ponents (slowly varying components usually operate
over a longer epoch and hence explain more variability).
This implies that one should be careful to attach signifi-
cance to the amount of explained variance of a compo-
nent, which decreases with each component that is ex-
tracted. The fourth or fifth component may not explain as
much variance as does the first, but this does not imply
that it is less meaningful. The variance in the component
scores is more important, because it is related to the exper-
imental manipulations.

Association Matrix

The first step in the ternporal PCA consists of com-
puting the association between all individual time points
(variables), which results in a symmetrical association
matrix with a size of the number of time points. The gen-
eral idea is, of course, that associated time points belong
to the same underlying component. The question is
which association measure to take, and the choice is usu-
ally restricted to cross products, covariances, or correla-
tions. The cross products matrix is produced by sum-
ming the results of the multiplication of all possible pairs
of variables across cases. The covariance matrix is com-
puted in the same way, except that the mean of each vari-
able is subtracted from each case before the cross prod-
ucts are computed. In addition, for the calculation of the
correlation matrix, the values of the individual cases for
each variable are also divided by the standard deviation
across all cases of that variable, with the result that all
variables have equal variance before the cross products
are computed.

The choice of the association measure has great con-
sequences for the interpretation of the PCA results. As
Donchin and Heffley (1978) pointed out, PCA of the cross
products matrix will result in components that are related
to large peaks in the original waveforms, even when such

peaks do not show any experimental effects. Further- ‘
more, the loadings of the first component usually repre-
sent the grand mean waveform of the original data. An
advantage of analyzing the cross products matrix is that
the resulting component loadings and scores can be in-
terpreted in terms of the original data—that is, the mea- . .:
surement units are the same (usually microvolts). This is
of particular importance in interpreting the polarity of a
component. Only when the cross products matrix is an-
alyzed, a positive component score is surely indicative of
positivity in the original data. However, the undesirable
property that the cross products PCA may result in com- . g
ponents without experimental variation causes this ma- ~
trix to be an unsuitable choice for PCA.

Analysis of the covariance matrix will lead to the ex-
traction of principal components that correspond to the
variance around the grand mean ERP. The extent to
which the individual ERPs differ from the grand mean, - %%
rather than their absolute amplitude, determines which e
principal components are extracted. This is a desirable -
feature, because it implies that components are only ex- i
tracted if there is variation across electrodes, conditions,
and subjects, and that is exactly what researchers are
looking for. The resulting component loadings and scores
should be interpreted with respect to the grand mean
ERP data—that is, a positive component score indicates
that the ERP in that situation is more positive than is the
grand mean. PCA on the correlation matrix results in
components that can be interpreted in roughly the same
way. The use of the covariance instead of the correlation
matrix is justified by the fact that the values of all vari-
ables represent a voltage. Hence, the variables have the iy
same scale, and there is no need to scale the data by the -~
standard deviations. However, there is N0 a priofi 1eason .
why the standard deviations of all variables are the same, .
even when identical measurement units are used, The;
difference between the PCA of the covariance matrix and ..
that of the correlation matrix is usually insignificant for
typical ERP data (Chapman & McCrary, 1995). Practical
considerations may guide the choice between the covari- ;
ance and the correlation matrix, such as the analysis
package available. BMDP allows all three association
matrices to be factored; SAS allows a choice between the
covariance and correlation matrix; and in SPSS only the
correlation matrix is analyzed. But even in the latter case,
it is easy to rescale the obtained component loadings to
the original measurement unit by multiplying the value ;
of each time point by the standard deviation of that time
point. For the present data set, the covariance matrix was K
analyzed, using SAS PROC FACTOR. 3

Rotation Criterion and Number of Components i
The purpose of rotation is to obtain a simpler interpre-
tation of the components. The solution of a PCA withmore #
than one component is not unique but just one of the in-
finite number of possible solutions. By rotation, one tries
to find the solution that possesses the property of simple
stricture, according to which a single variable has a high -
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Figure 2. Scree test of the PCA of the correlation matrix, for which the data displayed in Fig-
ure 1 were used. Note that the original number of components was 50 (equal to the number of
variables), but only the first 20 components are displayed to enbhance resolution.

leading on only one compoenent and a zero or negligibie
leading on all other components. In terms of the present
temporai PCAs on ERP data, this means that the tempo-
ral overlap of the principal components is minimized.
Often a Varimax rotation is done, which tries to find com-
ponents which are either large or small, not intermediate,
while maintaining orthogonality—that is, independence
between components. Oblique rotation methods—for in-
stance, Direct Quartimin—may achieve a greater degree
of simple structure but do not have the desirable property
of independent components. There has been some dis-
cusstom about presenting rotated or unrotated component
loadings (see, e.g., Rosler & Manzey, 1981, Wastell,
1981b), but the consensus is that component loadings
should be rotated and that the Varimax criterion is ap-
propriate for most practical applications.

Irrespective of the rotation method, it should be deter-
mined how many components should be rotated. The total
number of components in a PCA—K in Equation 1—is
theoretically equal to the number of variables that the PCA
was based on-—that is, 50 in the present case. For typical
ERP data, this number is much less, usually below 10, al-
though this depends on the experimental conditions of
the particular data. Since PCA extracts components in the
order of the percentage of explained variance, an obvi-
ous method is to find a criterion based on the amount of
explained variance, which is indicated by the eigenvalue
of the association matrix. Such a criterion ensures that
the nonretained components explain little variance in the
original data and can be treated as noise. The best-known
criterion is the eigenvalue equals one rule, by which only
those components are retained that have eigenvalues
greater than or equal to one, This is identical to stating that

a component should explain the variance of at least one
variable (time point). It should be noted that the rule onty
makes sense if the correlation matrix is factored, so that,
if the covariance matrix is to be analyzed, one could doa
separate PCA on the correlation matrix just to determine
the number of components and then extract that number
from the covariance matrix subsequently.

The eigenvalue equals one rule often overestimates
the number of relevant components semewhat. Another
method, which generally leads to a slightly smaller num-
ber of components, is the scree test, in which the compo-
nents’ eigenvalues are plotted against the ordinal com-
ponent number (Figure 2). Then, looking backward from
right to left along the x-axis, one tries to determine the
component number at which the eigenvalue starts to in-
crease. For the present data, this suggests that five com-
ponents should be retained and rotated, which in this
case agrees with the number of components that are based
on the eigenvalue equals one rule. Although the scree test
aliows for a certain degree of subjectivity in determining
the number of components, simulation studies have shown
that it results in a more accurate number of components
than does the eigenvalue equals one rule. Chapman and
McCrary (1995) recommended the performance of rota-
tion on both numbers of components and, if they are dif-
ferent, the selection of the most appropriate solution on
the basis of the theoretical interpretation of the resulting
components.

Statistical Tests on Component Scores

The scores of each component that results from the
PCA may be subjected to the same statistical tests as all
other ERP measures, such as peak or area measures.
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Figure 3. Component loadings obtained after factoring the covariance matrix, and ro-
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Often, univariate analysis of variance (ANOVA) is done
separately for each component. If the experimental con-
ditions are administered within subjects, as in the pres-
ent as well as in most psychophysiological experiments,
a repeated measures ANOVA should be performed. For
this test, it is assumed that the population variance is ho-
mogeneous across treatments (in this case electrodes and
conditions), and violation of this assumption leads to an
increase in Type I error. Because ERP measurements usu-
ally consist of multiple electrodes, and the values re-
corded at nearby electrodes are usually more correlated
than are those of distant electrodes, this problem is very
likely to occur in ERP analysis (Vasey & Thayer, 1987).
Therefore, one should either perform univariate ANOVAs,
in which the degrees of freedom involved in the tests are
corrected, for instance by the Greenhouse-Geisser g, or
perform a multivariate analysis of variance (MANOVA),
which has another way of dealing with this problem (see
O’Brien & Kaiser, 1985, for an excellent introduction to
MANOVA).

Results of Present PCA

With the present data set, a PCA was computed on the
covariance matrix using 50 variables and 240 cases. The
scree test presented in Figure 2 and the eigenvalue equals
one rule converged on extracting five components, which
were rotated to simple structure using a Varimax crite-
rion. The resulting component loadings are exhibited in
Figure 3, and the most important resuits of MANOVAs
on the corresponding component scores are given in Ta-
ble 2. In the component loadings plot, a large positive
peak at about 450 mscc after the stimulus canbe observed

a Varimax criterion. The data are the same as in Figure 1, but
condensed to 50 time points by taking means of 8 successive points. The statistical effects
on the associated component scores are shown in Table 2.

|

(Component 4). Note, again, that the positivity of this
peak indicates that the values are positive with respect to
the grand mean, given the fact that the covariance matrix
was factored. The component scores reveal a large effect
of instruction stimulus and no effect of response speed, .
suggesting that this component is stimulus-related. Q{
Component 3 peaks around 750 msec poststimulus, and —-
its scores show no main effect of instruction stimulus but -
a large effect of response speed. Thus, this component is
interpreted to be response-related. Figure 4 displays the .. .
scores of Components 3 and 4, and it is immediately
clear from that figure that Component 3 has an effect of
response speed but not of instruction stimulus, whereas

the reverse is true for Component 4. Note that the PCA

Table 2 |
Main Effects and First-Order Interactions of the MANOVA I
on the Component Scores of S Varimax-Rotated Components i
Obtained by PCA of the Covariance Matrix
Component Number i
Effect df 1 2 3 4 - 4
Instruction stimulus (8) 1,9 14.761 0.6} 1.10 7729t 035 ¥
Response speed (R) 1,9 005 302 1492f 0.67 1024
Electrode position (E) 2,8 648* 027 9.54% 1225t 635* &
Hemisphere (H) 1,9 243 7942t 171 13.261 290 3 3
SXR 19 68 016 121 025 11191 =
SXE 2.8 528* 4.65* 1253t 372 17214 ¥
§xH 1,9 006 1063+ 576 063 150 i
RxE 28 0.8 1.70 B94t 489* 118
RxXH 19 091 9.65% 157 326 210 -w
EXH 28 636* 276 039 1358t 065
Note—The loadings of these components are shown in Figure 3. g
*p< 05 tp< @l
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Figure 4. Effects of the factors instruction stimulus and response speed on the scores of Components 3 and 4, the loadings of which

are displayed in Figure 3, as a function of electrode position.

resulted in separate stimulus- and response-related com-
ponents, unlike the peak and area measures, in which
main effects of the within-subjects factor response speed
were also observed during the P450 interval (Table 1).

The other extracted components reveal a few other as-
pects of the data. As already noted, the first component
is an example of a spurious component resulting from
the autocorrelation in the data, when the baseline level is
pinned at the beginning of the recording interval. It at-
tracts some variance that is due to instruction stimuius
and the scalp distribution of the data. The second com-
ponent, peaking at about | sec poststimulus, attracts most
of the variance that is due to hemisphere differences,
whereas Component 5 reflects the interaction between
stimulus- and response-related activity and can be seen
to temporally overlap Components 3 and 4.

Taken together, the results of this PCA support the exis-
tence and independence of two components in the recorded
data, the first of which is stimulus-retated and probably a
manifestation of the P300. The second is response-retated,
presumably an instance of the reafferent potential. It is

important to note that this conclusion does not directly
follow from the PCA. The PCA just looks for instants at
which there is systematic variation because of experi-
mental treatments, electrodes, subjects, and so forth. A
peak at about 450 msec in the loadings of Component 3
just indicates that there is systematic variation at that
time, the source of which can be analyzed by the statis-
tical tests of the component scores. Because the exis-
tence of systematic variation is one of the key prerequi-
sites for defining theoretical components, as was argued
in the previous section, the PCA results yield important
arguments for the theoretical interpretation of the ob-
served waveforms.

Possible Criticisms

The use of temporal PCA for analyzing ERP data has
been criticized mainly on two grounds. First, PCA is said
to have difficulties extracting components with temporal
overlap. Wood and McCarthy (1984) reported that under
certain circumstances, especially with overlapping com-
ponents, the PCA—Varimax rotation—ANOVA of factor
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scores strategy may result in “misallocation of variance”
across components. A detailed discussion of this prob-
lem is beyond the scope of this paper, and it might have
been somewhat overemphasized by critics of the PCA
method. Even a quick glance at Tables 1 and 2 strongly
suggests that this problem is even more serious in the peak
and area measures, inasmuch as almost the entire vari-
ance associated with response speed was contained in
the interval of the P450. It is quite clear that, when a peak
or area measure is taken and there is overlap of the un-
derlying components, the resulting measure is necessar-
ily the sum of a combination of these components. This
kind of misatlocation is not made explicit when peak or
area measures are taken, but, when a PCA is done, the
misatlocation issue often comes up, even though the PCA
handles component ovetlap much better than do peak or
area measures.

A second criticism relates to PCA’s difficulty in ex-
tracting components with temporal variability (latency
jitter). It is true that PCA extracts components on the
basis of variability in amplitude and not in latency; thus,
it treats latency variability as amplitude variability. Don-
chin and Heffley (1978) have shown that a PCA of a data
matrix that contains waveforms of fixed amplitude but
variable latency results in a biphasic component repre-
senting the latency shift. One may criticize PCA for ex-
tracting such a component and hence not yielding the
“true” component structure of the data, but, as already
noted, PCA is not a magic tool which can be applied
blindly. A careful analysis of the component structure in
relation to the observed data will quickly provide insights
into such effects, and this is a more constructive approach
than just dismissing PCA altogether is. In addition, as al-
ready suggested by Donchin and Heffley and by various
others, such problems can fairly easily be circumvented
by special techniques that deal with the latency vanabil-
ity and that can be applied prior to the PCA, as will be
shown in the section on Woody filtering.

Spatial PCA

Until now, only the temporal PCA has been discussed,
in which time points are treated as variables and the ERPs
obtained from the different electrode positions, experi-
mental conditions, and subjects as cases (observations).
However, this is only one of the possible uses of PCA.
Another method is to treat the electrode positions as vari-
ables and the time points obtained in a particular exper-
imental condition as cases. The resulting component
loadings will now reveal at which electrode, or cluster of
electrodes, activity is present that can be separated from
the activity at other electrodes. The component scores
will then provide an indication of the time points at
which that activity is present. In other words, the spatial
PCA decomposes the potential distribution of the data,
which is justified because, as discussed previously, one
of the key characteristics of a theoretically defined ERP
component is its scalp distribution, being an indication

of the underlying neurophysiological generators. Since
modern equipment allows the activity from large arrays
of electrodes to be fairly easily recorded, it can be expected
that the spatial PCA will become increasingly important.
Strangely enough, the spatial PCA is not yet included as
an option in most modern source localization software
packages, but it can easily be computed with standard
statistical software by using the same guidelines as those
indicated above for the temporal PCA.

Spatial PCA is most useful in combination with tem-
poral PCA. This can be done in one of two ways. First,a
temporal PCA as described above can be done to identify
the epochs within the ERP where variability exists. Sub-
sequently a spatial PCA follows the temporal PCA to de-
compose the scalp distribution in that epoch. Alterna-
tively, the spatial PCA may be computed immediately, not
for just one particular epoch, but over the whole recording
interval. All time points are then entered as cases, which
yields very large numbers of cases (usually over 10,000)
and hence reliable results, Each resulting component load-
ing can then be mapped by using interpolation techniques,
such as those that one would apply to the standard ob-
served ERPs. Subsequently, a temporal PCA is computed
on the component scores, which are split into a time-
variant and time-invariant part. An illustration of the lat-
ter method is provided by Donchin et al. (1997}

Another interesting recent development in the spatial
domain is Mocks’s {1988) trilinear decomposition of
ERPs. He suggested a PCA model in which an extra pa-
rameter that represents electrode coefficients was added.
Instead of decomposition into two parts—the loadings

and the scores, the latter including the variation due to elec- 4§
trodes—Maocks proposed to decompose the observed ERP -

into three parts: loadings, electrode coefficients, and scores. ..o

In this case, the scores represent the variation that is due

to experimental treatments and subjects only. This model

has some interesting properties, most notably that it has . -

unique solutions for a fixed number of components, so that
rotation is no longer needed. However, i1 is computation-
ally more complicated and not available in standard sta-
tistical packages. This might be an interesting area for fu-
ture developments.

DEALING WITH TEMPORAL VARIABILITY
OF ERP COMPONENTS

In the above section, it was noted that PCA has some
difficulties in dealing with temporal variability in wave-

forms. Indeed, it should not be forgotten that most ERP
analyses are done on data that are averaged over a some-
times substantial number of trials that belong to the same
experimental manipulation. For instance, for the data of
Figure 1, the average number of trials per condition was
about 60 for each subject. Of course, the first positive
peak after the response, labeled P450, will not occur at
450 msec on each single trial. Changes in the state of the
subject’s attention and other sources of uncontrolled
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variation will lead to temporal variability in the peak of
the deflection (also referred to as latency jitter). The effect
of trial-to-trial variability of peak latencies on the re-
sulting average is that peaks will be smaller and broader
than in the “true” average—that is, the average without
latency variability. In the case of the present data, it can
be expected that latency jitter affects the P750 more than
it does the P450, because the total variability of the P750
is the sum of the variabilities that are due to stimutus pro-
cessing, central processing, and response execution. The
P450, on the other hand, is supposed to reflect stimulus
processing only, so it is likely to show less variability (un-
less there is no variability in central processing and re-
sponse execution, of course). Judged from Figure 1, the
P750 does indeed seem smalier and broader than does
the P450.

In order to estimate the response-related P750 better,
one could produce another average that includes the
same data trials but in which the instant of the overt re-
sponse is aligned, rather than the instant of the stimulus,
as in Figure 1. This will eliminate the temporal variability
of the response and, as a consequence, introduce tempo-
ral variability in the sumulus. Since the P450 is thought
to be related to the stimulus and the P750 to the response,
the new average is likely to have a smalier and broader
P450 peak and a greater and narrower P750 peak, as com-
pared with the average synchronized to the stimulus. To
eliminate response-related variability even further, one
could take the onset electromyographic (EMG) activity as
the synchronizing point—inasmuch as that instant is as-
sumed to be closer in time to the events taking place in
the brain—and, hence, the variability between EMG onset
and the overt button press can also be eliminated.

in the present experiment, there were only two exter-
nal events—the stimulus and the response. The P450 peak
is thought to be related to the stimulus, so its temporal ,vari-_
ability is lowest in the average synchronized to the stim-
ulus. However, that average still has inherent temporal
variability of the P450 peak, which may even be greater
in one condition than in another, In order to eliminate
that variability, an average synchronized to the internal
response to the stimulus should be calculated, but that is
exactly the instant that the P450 peak is thought to rep-
resent. One could try then to synchronize the average on
the P450 peak itself; the most frequently used procedure
for doing so is cailed Woody filtering. Woody filtering is
very briefly discussed below, after which a more elabo-
rate analysis of the detection of EMG onset is given.

For producing latency-corrected ERP averages, an es-
timation of the latency of the signal of interest (the P300
or the EMG, in this case) on the single trial is needed.
Estimating the overall latency from averaged ERP data is
also possible but has its own set of caveats, some of which
are discussed by Smulders, Kenemans, and Kok (1996).
The most important pitfall for onset latency measurement
from averaged data is that the onset will be determined
by the trials in which it occurs relatively early. On the basis
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of simulations, Smulders et al. suggested that this pitfall
could be avoided by taking the instant at which the com-
ponent of interest exceeds 50% of its maximum amplitude
{(or some other threshold, depending on the signal). Often
only differences in latency between experimental condi-
tions are needed, not the absolute values of the latency
themselves. In this case, the method recently introduced
by Miller, Patterson, and Ulrich (1998) was shown to be
very accurate and computationally fast and simple. Al-
though the latter two methods have the enormous advan-
tage that calculations can be done on the single subjects
average, however, they cannot be used to produce latency-
corrected averages, for which calculations need to be done
on the single trials.

Woody Filtering

Woody (1967) proposed an adaptive filtering method
for dealing with the temporal variability of the signal, by
which a latency-corrected average is produced. The method
uses a template, which is usually the initial average syn-
chronized to the stimulus, although sometimes a low-fre-
quency positive half-cycle sine wave is used. The covan-
ance between the template and the observed single trial
ERP is then computed across a range of time shifts— that
is, the template is shified from left to right across the sin-
gle trial ERP. When the covariance reaches a maximum,
the signal is said to be detected. This procedure is repeated
for every single trial, and each trial is then shifted by a
number of points corresponding to the maximum of the
covariance function for that trial. Subsequently, a new av-
erage is computed, which provides a better view of the
latency-corrected signal. The new average then replaces
the old template, and the entire procedure is repeated un-
til, on some index, no further improvement is seen.

A major danger of Woody’s {1967) procedure and of
all methods dealing with latency alignment, for that mat-
ter, is that the template may be erroneously aligned to
background noise instead of to the single trial peak. Was-
tell (1977) argued that this is often the case when more
than one iteration is done, which also corresponds to the
findings of Macks, Kohler, Gasser, and Pham (1988)
using simulated data. The latter authors also presented a
new method for obtaining estimates of latency shifts in
the frequency domain, which performed better than
Woody’s algorithm and which also allows a statistical
test on the presence of latency jitter. Their method, which
is based on a maximum likelihood estimation, is too
complicated to describe here in nonmathematical terms,
but those interested are referred to their Appendix, in
which the fuil details of the method are given, with a
view to implementing it in computer software.

Producing latency-corrected averages should be viewed
as an essential step in the data analysis procedure, espe-
cially when the initial (often stimulus-locked) average
suggests that latency jitter may influence the interpreta-
tion of the results. If one records ERPs in different con-
ditions and the ERP in one condition is smaller but broader



98 van BOXTEL

than it is in another condition, one can be sure to have a
latency jitter problem, and adjustment is an absolute ne-
cessity for a useful interpretation of the results. Woody's
(1967) algorithm is very simple and hardly computa-
tionally intensive, given today’s availability of comput-
ing power. Yet it has proved to be very useful in a num-
ber of studies too large to enumerate here.

The Detection of EMG Onset

Methods for detecting EMG onset are described in de-
tail here because not much attention is given to them in
the literature. It seems as if each laboratory has its own
method of EMG onset determination, which is trusted so
much that it is not considered necessary to provide in-
formation about its accuracy; at least, this is seldom re-
ported in articles. Yet, automated methods for EMG
onset determination differ much in their ability to detect
the onset accurately, although these differences can be
minimized substantially by applying a few additional
rules. The detection of EMG onset is not only important
for producing averages synchronized to the response. In
some cases, ERP components are defined with respect to
EMG onset, such as the motor potential of the readiness
potential (Kornhuber & Deecke, 1963). In addition, in
modern mental chronometry, the reaction time interval is
divided up into an increasing number of epochs, each of
which is thought to be associated with a certain psycho-
togical process. Psychophysiology provides a number of
methods for delineating those epochs, and the EMG
onset is one of them.

EMG onset can only be reliably scored if the EMG
signal is rectified—that is, if the absolute value at each
time point is taken. The correct recording procedure is as
follows. First, the EMG signal is high-pass filtered in
order to eliminate slow movement artifacts. Then the

signal is (full wave) rectified, an operatior by which all*

negative values are flipped to positive ones. This will ap-
proximately double the frequency content of the signal:
hence, it should be done before low-pass anti-aliasing
filtering. The cutoff frequency of the high-pass fiiter
will determine the steepness of the initial EMG burst;
the higher that frequency, the steeper will be the result-
ing burst. However, the cutoff frequency will also be lim-
ited by the cutoff frequency of the low-pass filter and the
desired sampling frequency. For instance, if the data are
1o be sampled at a rate of 200 Hz, the maximum low-pass
cutoff frequency is 100 Hz (preferably lower, depending
on the filter’s roll-off), and the cutoff frequency of the
high-pass filter is necessarily lower than is that of the
low-pass filter. In practice, good values for the high-pass
filter are 20 or 30 Hz, allowing a low-pass filter cutoff of
50 Hz and a sampling rate of at least 100 Hz to avoid
aliasing. The resulting bandpass of 20 or 30 Hz to 50 Hz
seems to be very narrow, but it is a practical range if one
is interested in automatically scoring the EMG onset for
typical ERP applications.

Barrett, Shibasaki, and Neshige (1985) presented
method of visual EMG onset determination. The point at ;
which the EMG trace exceeds a threshold voltage preset
by the experimenter is determined by a computer, which
then displays the rectified EMG on the screen and draws
a vertical line through that point. The vertical line can be
moved by cursors, and the precise onset can be deter- -
mined manually by the experimenter. This method allows
for precise EMG onset determination but is very labori-
ous if large numbers of trials and subjects are involved;
moreover, it allows for a certain degree of subjectivity in .
onset determination. il

Van Boxtel. Geraats, van den Berg-Lenssen, and Bry. ~
nia (1993) compared the accuracy of some automated
methods for EMG onset determination, They asked five
experienced researchers to visually determine the onset |
of minimally filtered EMG traces from a large number of
trials to the nearest millisecond. They then filtered and ™%
down sampled the same trials to make them comparable ;
to EMG recordings obtained in real experimental appli- 7
cations. Subsequently, the various onset detection meth-
ods were applied, and the results of those methods were
compared to the visually determined onset. Only those
methods were studied that were presented in articles
whose main purpose was to describe an EMG onset de- .
tection method. This does not imply that other methods
may not be just as accurate, or even more accurate, but
as explained above, there are probably just as many _
methods as there are psychophysiological laboratories.

In Figure 5, an example of a single-trial EMG record
is displayed, annotated to show the guiding principle be- -
hind the methods that were investigated. All methods ini- "%
tially rely on a threshold voltage comparison—that is, -
they locate the time point in which the EMG burst ex- -g
ceeds a certain fixed voltage. The time point found is then
regarded as 2 kind of candidate onset, and additional cri- » -
teria have to be met in order for this candidate pointto  *
qualify as the real EMG onset. If the additional criteria
are not met, a next candidate onset is searched (usually
the next sample). The additional criteria vary from method {
to method and usually fall into one of three classes. In
the first class, an analysis of the temporal properties of =
the EMG burst is done: How long does the EMG remain
above threshold level? In the second class, an amplitude
analysis is done: s there an increase in amplitude after
the candidate onset? Finally, the third class uses an area
analysis: How large is the area under the EMG burst curve? g
The following methods are variants of these general prin- .
ciples. It should be noted that intuitively obvious methods
for determining the EMG onset do not work well. For in-
stance, determining a high threshold and interpolating
back to the zero level, calculating the first or second de- :
rivative of the EMG trace, and Woody filtering are all °
methods which significantly overestimate the onset.

Threshold voltage comparison. Most researchers de-
termined EMG onset by simply comparing the rectified
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*d and Figare 5. Example of a single-trial EMG recorded bipolarly from the palmar aspect of the
arable right forearm, high-pass flltered at 20 Hz, full-wave rectified, and then low-pass filtered at
appli- £0 Hz The annotations are intended to clarify the nature of the varfous EMG onset scoring
meth- methods.
were
::3:2 signal against a preset threshold voltage. The advantages  withina f ixed interval have larger gmpljtudes than does
st de- of this method are that it is extremely si_mple and may‘be the preset thre:shold level, :pe onset s sa_xd to be detectefj.
;h ods performed both on line on the anatog signal and off line . The soﬁwa¢ !mplememat.lon can be s_hghtly adapted in -
o. but on the digitized trace. It also has some drawbacks. The order to optimize t‘hel: technique by specnfymg that 7. sam-
n; any preset threshold level must be determined for e?ch sub-  ples out of n, equidistantly spaced sz_xmples in an interval
totie~ ject separately. If it is set too low, the method will be ex-  of T msec should have larger amphtpdes than does Fhe
rec tremely sensitive to small preliminary bursts of EMG ac- threshold level, without the assumption of successivity.
ale be- tivity anq, heqce, yvil! undergstimate EMG onset. If it is Tl_le threshold level sht_)uld be determined by Equation 2
\ds ini- set too high, it will overestimate the onset. Moreover, with F = 11. Appropriate values for ), 7,, and Tare 3,
hat is this method is susceptible to.tne‘nl-to-tn'al differences in 6, and 64, respectively (based ona sampling frequency
st ex: EMG rise time. Instead of this simple fixed threshold,a  of 200 Hz). Henc_e‘.for each candidate onset sample num-
is then variable threshold can be used, v_vhlch can ‘be used _for all berk,n, =6 eqt_udtstantly spaced samples are taken from
aal cri- subjects. This is done by calculating a running co_nﬁdence the §ubs:equent tqterval of T = 64 msec {12 samples), re-
oint 10 interval of a fixed number of samples (N ), starting at the  sulting m the series k+1, k+3, ... k+11. Of these series,
-riteria stimulus, until a sample is detected that is larger than the »n, = 3 samples must be above threshold level.
usually upper confidence limit. The upper con fidence limit can Lidierth: Threshold veltage a_md temporal analysis.
nethod be adapted by a factor (F), so that the onset is said to be The algorithm proposed by Lidierth _(1986) relies on a
", es. In at sample [if, for the voltage ¥, the following equation is threshpld voltage comparison that is followt_ad by an
tie s of satisfied: analysis of the EMG burst duration. If the rectified EMG
emain < has a larger voltage than does the threshold level, a check
Slitude V2 M+ F g oy ———, (2) ismadeto determine t_hat the burst has a minimum length
e after A(N=1) of 1, msec and a maximum length of 1, msec. However,
\n area . o transient decreases below the threshold are ignored if they
curve? where M is the mean, S is the standard deviation of the are not longer than #; msec. Th'e threshold voltage can be
alpri 0 previous N samples, and ¢ is the value from Student’s 7dis-  calculated from Equation 2 with F = 6, and the optimal
cthods tribution at probability level cand N—1 degrees of free-  values for ¢, and £, are 90 and 1,000 msec, respectively.
.Fo - in- dom. This method was found to l_)e always better than the For fast EMG bursts, as they are rpostly recorded, ¢4 s}wuid
olating fixed threshold voltage comparison, and the values for  be set to zero; foF slow bursts, it can be? set to a slightly
nd de. the parameters, assuming a sampling frequency of 200Hz, higher value, for instance 10, but this will very much de-
are all are suggested to be set at N =15, &= .01, t(01, 14y = pend on the characteristics of the burst.
et 2.624 and F = 10.5. Pppivanov: Threshold voltgge and area analysis.
=ré de- Greeley: Threshold voltage and amplitude gnaly- Popivanov (1986) prqposed a slightly more complicated
tified sis. Greeley (1984) proposed an on-line technique, imple- procedure: If the rectified EMG exceeds a preset thresh-

mented in hardware, for estimating the EMG onset. This
technique is easily implemented in software and works
as follows. If several successive points of rectified EMG

old value at sample /, cumulative sums are computed for-
ward and backward for a preset interval C. This procedure
is iterated for the next samples / with voltages ¥; until
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Figure 6. The same ERP traces as displayed in Figore 1, but averaged with the EMG oiisets as thesyn- * "
chronization peint. The EMG onsets were determined in the single trials using the method of Lidierth
(1986), complemented by backward calculation to the preceding local minimum. The vertical lines below
each trace indicate the instant of the average EMG onset.

the ratio of the cumulative sums becomes equal to or
higher than a preset number 4:

+C i
2724 3V, ©)
i=f I C

The parameters for this method are very hard to optimize,
but the best values were found to be F* = 7 for the thresh-
old voltage comparison, C = 10 msec, and 4 = 2.5.
All of these methods are abie to determine the onset in
more than 99% of all trials. In the plain application of the
algorithms, the method of Greeley (1984) produced on-
sets that were closest to the visually determined onsets in
the raw traces. However, one important point should be
noted. These methods all rely on an initial threshold level

comparisbn that, by its nature, detects the onset too late.
Therefore, an obvious procedure to be applied, after the
plain application of these methods, is to calculate back-
ward from the onset produced by the methods to the pre-
ceding local minimum. This procedure greatly improves
the results for all methods, and the algorithms of Gree-
ley (1984) and Lidierth (1986) produce the most accu-
rate resuits after application of this additional procedure,
The average difference from the visually determined

onset is then below 5 msec for both methods, which equals
one sample point at a sampling frequency of 200 Hz. Li- %
dierth’s method produces a slightly lower average stan- %

dard deviation around the mean, and its parameters are
easier to adjust than is the algorithm suggested by Gree-
ley. Hence, Lidierth’s method can be expected to be ap-
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plicable te a larger variety of different muscles and to be
easier to adapt when special requirements must be met,
as, for instance, in the case of partial responses.

The data displayed in Figure 1 were averaged again,
taking as the point of synchronization the EMG onsets
determined by the method of Lidierth (1986), comple-
mented by backward calculation to the preceding local
minimum. The resulting waveforms are displayed in Fig-
ure 6. These new averages can now form the basis of a
new set of tests that include area measurement, peak
picking, and PCA. When comparing the results to the
stimulus-locked averages (Figure 1), it can be observed
that the response-related peak previously denoted as
P750 has become larger, and the stimulus-related P450
has become smaller. At the C3 electrode, which is over
the motor area of the hemisphere contralateral to the re-
sponse, the P750 is even larger than is the P450 in the new
average. These results, which are supported by statistical
tests not presented here, support the interpretation that
the first peak after the stimulus is related to the processing
of that stimulus, which is followed by a second peak re-
lated to the execution of the response. This in turn supports
the presence of the existence of independent stimulus-
and response-related ERP components in these data.

There is probably no single best algorithm for finding
EMG onset automatically. The accuracy of a particular
method may vary with the quality of the EMG recording,
which in turn depends on various aspects of the muscle
from which the activity is recorded and on data collec-
tion procedures. This survey is, therefore, not given to con-
vince researchers to use this or that particular algorithm.
However, it is felt that researchers should look into the
accuracy of their method and report these accuracy find-
ings in their papers. This survey and the study of van Box-
tel, Geraats, et al. (1993) merely provide some useful
suggestions to this end.
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NOTES

1. In the criginal data, the prestimulus CNV was about 3 4V more neg-
ative when the instruction was transmitted at the second stimulus, as
opposed to the first. For all the present analyses, this difference was re-
maved by calculating a new baseline over the 500-msec interval imme-
diately preceding the stimulus. This inflated the difference in the factor
instruction stimulus on the first positivity after the stimulus.

2. Actually, PCA is the more general technique, of which factor
analysis is a vanant.




