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| was 45% and 36% for Caucasian and Japanese women, respectively. Afier-
nent for effects of age, the only predictor retained in the stepwise analysis for
ces was ‘‘surgery related to a female disorder.”” For Caucasian women o:_w.u,
ditional predictor, medication, was selected in the stepwise analysis. For age,
uared, surgery, and medication, discriminant function coefficients and their'
rd errors were given.'? Finally, predictors common (0 both races were selected’
terogeneity of coefficients between Japanese and Caucasian samples were '’
14 No significant heterogeneity was found-—that is, the two races did not produce
cantly different discriminant functions. An alternative strategy for this test is -
srial discriminant function analysis, with race as one IV and menopausal vs;*
enopausal as the other.

it

«3

13 Because this 1wo-group analysis was run through a multiple regression program, a._m.n_.i.m:n.n.._
ion coefficients were produced as P weights {cf. Chapter 5) and standard errors were available-

1 The test for heterogeneity reported was that of Rac (1932) as applied by Goodman et al. (1974)-

Chapter 1.

Principal Components and
Factor Analysis

12.1 GENERAL PURPOSE AND DESCRIPTION

Principal components analysis (PCA) and factor analysis (FA) are statistical techniques
applied to a single set of variables where the researcher is interested in discovering
which variables in the set form coherent subsets that are relatively independent of
one another. Variables that are correlated with one another but largely independent
of other subsets of variables are combined into factors.' Factors are thought to reflect
underlying processes that have created the correlations among variables.

Suppose, for instance, a researcher is interested in studying characteristics of
graduate students. The researcher measures a large sample of graduate students on
personality characteristics, motivation, inteilectual ability, scholastic history, familial
history, health and physical characteristics, etc. Each of these areas is assessed by
numerous variables; the variables all enter the analysis individually at one time and
correlations among them are studied. The analysis reveals patterns of correlation
among the variables that are thought to reflect underlying processes affecting the
behavior of graduate students. For instance, several individual variables from the
personality measures combine with some variables from motivation and scholastic
history to suggest a person who prefers to work independently, an independence factor.
Several variables from the intellectual ability measures combine with some others
from scholastic history to suggest an intelligence factor.

A major use of PCA and FA is in development of objective tests for measurement
of personality and intelligence and the like. The researcher starts out with a very
large number of items reflecting a first guess about the items that may eventually

! PCA produces components while FA produces factors, but it is less confusing here to call the
results of both analyses factors.
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prove useful. The items are given to randomly selected subjects and factors are
derived. As a result of the first factor analysis, items are added and deleted, a second
test is devised, and that test is given to other randomly selected subjects. The procesg
continues until the researcher has a test with numerous items forming several factors
that represent the area to be measured. The validity of the factors is tested in research
where predictions are made regarding differences in behavior of persons who score
high or low on a factor.

The specific goals of PCA or FA are to summarize patterns of correlations
among observed variables, to reduce a large number of observed variables to a smaller
number of factors, to provide an operational definition (a regression equation) for an
underlying process by using observed variables, or to test a theory about the nature
of underlying processes. Some or all of these goals may be the focus of a particular
research project.

PCA and FA have considerable utility in reducing numerous variables down
to a few factors. Mathematically, PCA and FA produce several linear combinations

of observed variables, each linear combination a factor. The factors summarize the
patterns of the correlations in the observed correlation matrix and can, in fact, be

used to reproduce the observed correlation matrix. But the number of factors is usually

far fewer than the number of observed variables so there is considerable parsimony .
in a factor analysis. Further, when scores on factors are estimated for each subject,

they are often more reliable than scores on individual observed variables. o

Steps in PCA or FA include selecting and measuring a set of variables, preparing

the correlation matrix (to perform either PCA or FA), extracting a set of factors from
the correlation matrix, determining the number of factors, (probably) rotating the
factors to increase interpretability, and, finally, interpreting the results. Although there
are relevant statistical considerations to most of these steps, the final test of the
analysis is usually its interpretability. ’

A good PCA or FA “‘makes sense”’; a bad one does not. Interpretation and

naming of factors depend on the meaning of the particular combination of observed

variables that correlate highly with each factor. A factor is more easily interpreted
when several observed variables correlate highly with it and those variables do not
correlate with other factors. _

One of the problems with PCA and FA is that there is no criterion beyond -

interpretability against which to test the solution. In regression analysis, for instance,
the DV is a criterion and the correlation between observed and predicted DV scores
serves as a test of the solution. Similarly for the two sets of variables in canonical
correlation. In discriminant function analysis, profile analysis, and multivariate anal-
ysis of variance, the solution is judged by how well it predicts group membership-
But in PCA and FA there is no external criterion such as group membership against
which to test the solution.

A second problem with FA or PCA is that, after extraction, there are an infinite -

number of rotations available, all accounting for the same amount of variance in the
original data, but with factors defined slightly differently. The final choice among
altenatives depends on the researcher’s assessment of its interpretability and scientific
atility. In the presence of an infinite number of mathematically identical solutions
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researchers are bound to differ regarding which is best. Because the differences
cannot be resolved by appeal to objective criteria, arguments over the best solution
sometimes become vociferous. However, those who expect a certain amount of am-
biguity with respect to the best FA solution will not be surprised when other researchers
select a different one. Nor will they be surprised when results are not replicated if
different decisions are made at one, or more, of the steps in performing FA.

A third problem is that FA is frequently used in an attempt to **save’’ poorly
conceived research. If no other statistical procedure is applicable, at least data can
usually be factor analyzed. Thus in the minds of many, FA is associated with sloppy
rescarch. The very power of PCA and FA to create apparent order from real chaos
contributes to their somewhat tamished reputations as scientific tools.

There are two major types of FA: exploratory and confirmatory. In exploratory
FA, one seeks to describe and summarize data by grouping together variables that
are correlated. The variables themselves may or may not have been chosen with
potential underlying processes in mind. Exploratory FA is usually performed in the
early stages of research, when it provides a tool for consolidating variables and for
generating hypotheses about underlying processes.

Confirmatory FA is a much more sophisticated technique used in the advanced
stages of the research process to test a theory about latent processes or to investigate
hypothesized differences in latent processes between groups of subjects. Variables
are carefully and specifically chosen to reveal underlying processes.

Before we go on, it is helpful to define a few terms. The first terms involve
correlation matrices. The correlation matrix produced by the observed variables is
called the observed correlation matrix. The correlation matrix produced from factors
is called the reproduced correlation matrix. The difference between observed and
reproduced correlation matrices is the residual correlation matrix. In a good FA,
comelations in the residual matrix are small, indicating a close fit between observed
and reproduced matrices.

A second set of terms refers to matrices produced and interpreted as part of
the solution. Rotation of factors is a process by which the solution is made more
interpretable without changing its underlying mathematical properties. There are two
general classes of rotation: orthogonal and oblique. If rotation is orthogonal (so that
all the factors are uncorrelated with each other), a loading matnx is produced. The
loading matrix is a matrix of correlations between observed variables and factors.
The sizes of the loadings reflect the extent of relationship between each observed
variable and each factor. Orthogonal FA is interpreted from the loading matnx by
looking at which observed variables correlate with each factor.

If rotation is oblique (so that the factors themnselves are correlated), several
additional matrices are produced. The factor correlation matrix contains the corre-
lations among the factors. The loading matrix from orthogonal rotation splits into
two matrices: a structure matrix of correlations between factors and variables and a
pattern matrix of unique relationships (uncontaminated by overlap among factors)
between each factor and each observed variable. Following oblique rotation, the
meaning of factors is ascertained from the pattern matrix.

Lastly, for both types of rotation, there is a factor-score coefficients matrix, a
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matrix of coefficients used to estimate scores Ofi factors from scores on observed
variables for each individual.

FA produces factors, while PCA produces components. However, the E.oonmm_om _
are similar except in preparation of the observed correlation matrix for extraction.
The difference between PCA and FA is in the variance that is analyzed. In PCA, all,
the variance in the observed variables is analyzed. In FA, only shared variance is
analyzed; attempts are made to estimate and eliminate variance due to ervor and
variance that is unique to each variable. The term factor is used here to refer to both.
components and factors unless the distinction is critical, in which case the appropriate _
term is used. .

12.2 KINDS OF RESEARCH QUESTIONS

The goal of research using PCA or FA is to teduce a large number of variables to
a smaller number of factors, to concisely describe (and perhaps understand) th .
relationships among observed variables, or to test theory about underlying processesis 3§
Some of the specific questions that are frequently asked are presented in Sections
12.2.1 through 12.2.6. i

12.2.1 Number of Factors

How many reliable and interpretable factors are there in the data set? How many,
factors are needed to summarize the pattern of correlations in the correlation matrix?
In the graduate stadent example, two factors are discussed; are these both reliabie?
Are any more reliable factors present? Strategies for choosing an appropriate numbef
of factors and for assessing the correspondence between observed and reproduce
correlation matrices are discussed in Section 12.6.2. S

12.2.2 Nature of Factors .

What is the meaning of the factors? How are the factors to be interpreted? Factors
are interpreted by the variables that correlate with them. Rotation to improve intet
pretability is discussed in Section 12.6.3; interpretation itself is discussed in Sectionl,
12.6.5.

12.2.3 Importance of Solutions and Factors

How much variance in a data set is accounted for by the factors? Which factors
account for the most variance? In a good factor analysis, a high percentage of the
variance in the observed variables is accounted for by the first few factors. >=a.w
because factors are computed in descending order of magnitude, the first factory
accounts for the most variance, with later factors accounting for less and less of %o(
variance until they are no longer reliable. Methods for assessing the importanc® of %
solutions and factors are in Section 12.6.4.

.
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12.2.4 Testing Theory in FA

How well does the obtained factor solution fit an expected factor solution? The
researcher generates hypotheses regarding both the number and the nature of the
factors expected of graduate students. Comparisons between the hypothesized factors
and the factor solution provide a test of the hypotheses. Tests of theory in FA are
addressed, in preliminary form, in Sections 12.6.2 and 12.6.7.

12.2.5 Comparing Factor Solutions for Different
Groups .

How similar are the factors for persons with different characteristics or different
experiences? For instance, are the factors for graduate students the same as the factors
for undergraduate business majors or other groups that have not gone on to graduate
school? Similarity in factors between two groups is assessed, in preliminary fashion,
using techniques described in Section 12.6.7

12.2.6 Estimating Scores on Factors

"Had factors been measured directly, what scores would subjects have received on

each of them? For instance, if each graduate student were measured directly on
independence and intelligence, what scores would each student receive for each of
them? Estimation of factor scores is the topic of Section 12.6.6.

12.3 LIMITATIONS

12.3.1 Theoretical Issues

Most applications of PCA or FA are exploratory in nature; FA is used as a tool for
reducing the number of variables or examining patterns of correlations among variables
without a serious intent to test theory. Under these circumstances, both the theoretical
and the practical limitations to FA are relaxed in favor of a frank exploration of the
data. Decisions about number of factors and rotational scheme are based on pragmatic
rather than theoretical criteria.

The research project that is designed specifically to be factor analyzed, however,
differs from other projects in several important respects. Among the best detailed
discussions of the differences is the one found in Comrey (1973, pp- 189211}, from
which some of the following discussion is taken.

The first task of the researcher is to generate hypotheses about factors believed
to underlie the domain of interest. Statistically, it is ._Bvonmsﬂ. to make the research
inquiry broad enough to include five or six hypothesized factors so that the solution
is stable. Logically, in order to reveal the processes underlying a research area, all
relevant factors have to be included. Failure to measure some important factor may
distort the apparent relationships among measured factors. Inclusion of all relevant
factors poses a logical, but not statistical, problem to the researcher.

A
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Next, one selects variables to observe. For each hypothesized factor, five or
six variables, each thought to be a relatively pure measure of the factor, are included,
Pure measures are called marker variables. Marker variables are highly correlated
with one and only one factor, and load on it regardless of extractional or rotational
technique. Marker variables are usefu] because they define clearly the nature of a
factor; adding potential variables to a factor to round it out is much more meaningful
if the factor is unambiguously defined by marker variables to begin with.

The complexity of the variables is also considered. Complexity is indicated by
the number of factors with which a variable correlates, A pure variable is correlated
with only one factor, whereas a complex variable is correlated with several. If variables
differing in complexity are all included in an analysis, those with similar complexity
Jevels may ‘‘catch’ each other in factors that have little to do with undetlying
processes. Variables with similar complexity may correlate with each other because
of their complexity and not because they relate to the same factor. Estimating the
complexity of variables is part of generating hypotheses about factors and selecting
variables to measure them. :

Several other considerations are required of the researcher planning a factor
analytic study. It is important, for instance, that the sample chosen exhibit spread in

scores with respect to the variables and the factors they measure. If all subjects

achieve about the same score on some factor, correlations among the observed variables
are low and the factor may not emerge in analysis. Selection of subjects expected to
differ on the observed variables and underlying factors is an important design con-
sideration.

One should also be leery about pooling the results of several samples, or the
same sample with measures repeated in time, for factor analytic purposes. First,
samples that are known to be different with respect to some criterion (e.g., S0Cio-
economic status) may also have different factors. Examination of group differences
is often quite revealing. Second, underlying factor structure may shift in time for the
same subjects with learning or with experience in an experimental setting and these
differences may also be quite revealing. Pooling results from diverse groups in FA
may obscure differences rather than illuminate them.

On the other hand, if different samples do produce the same factors, pooling
them is desirable because of increase in sample size. For example, if men and women
produce the same factors, the samples should be combined and the results of the
single FA reported. Strategies for evaluating differences in factors among groups are
discussed in Section 12.6.7.

12.3.2 Practical Issues

Because FA and PCA are exquisitely sensitive to the sizes of correlations, it is critical
that honest, reliable correlations be employed. Sensitivity to outlying cases, problems
created by missing data, and degradation of correlations between poorly distributed
variables all plague FA and PCA. A review of these issues in Chapter 4 is important
to FA and PCA. Thoughtful solutions to some of the problems, including variable
transformations, may markedly enhance FA, whether performed for exploratory Of
confirmatory purposes. However, the limitations apply with greater force t0 confir-
matory FA.
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12.3.21 Sample Size and Missing Data Correlation coefficients tend to be less
reliable when estimated from small samples. Therefore, it is important that sample
size be large enough that correlations are reliably estimated. Comrey (1973) gives
as a guide sample sizes of 50 as very poor, 100 as poor, 200 as fair, 300 as good,
500 as very good, and 1000 as excellent. Others suggest that a sample size of 100
to 200 is good enough for most purposes, particularly when factors are strong and

distinct and number of variables is not too large. As a general rule of thumb, it is &m

comforting to have at least five cases for each observed variable.

The required sample size depends also on magnitude of population correlations
and number of factors. If there are strong, reliable correlations and a few, distinct
factors, a sample size of 50 may even be adequate, as long as there are notably more
cases than factors.

If cases have missing data, either the missing values arc estimated or the cases
are deleted. Consult Chapter 4 for methods of finding and estimating missing values.
Consider the distribution of missing values (is it random?) and remaining sample
size when deciding between estimation and deletion. If cases are missing values in
a nonrandom pattern or if sample size becomes too small, estimation is in order.
However, beware of using estimation procedures (such as regression) that are likely
to overfit the data and cause correlations to be too high. These procedures may
“‘create’’ factors.

12.3.2.2 Normality As long as PCA and FA are used descriptively as convenient
ways to summarize the relationships in a large set of observed variables, assumptions
regarding the distributions of variables are not in force. If variables are normally
distributed, the solution is enhanced. To the extent that normality fails, the solution
is degraded but may still be worthwhile.

However, when statistical inference is used to determine the number of factors,
multivariate normality is assumed. Multivariate normality is the assumption that all
varjables, and all linear combinations of variables, are normally distributed. Although
normality of all linear combinations of variables is not testable, normality among
single variables is assessed by skewness and kurtosis (see Chapter 4 and Section
12.8.1.2). If a variable has substantial skewness and kurtosis, variable transformation
is considered.

12.3.2.3 Linearity Multivariate normality also implies that relationships among
pairs of variables are linear. Because correlation measures linear relationship and
does not reflect nonlinear relationship, the analysis is degraded when linearity fails.
Linearity among pairs of variables is assessed through inspection of scatterplots.
Consult Chapter 4 and Section 12.8.1.3 for methods of screening for linearity. If
nonlinearity is found, transformation of variables is considered.

12.3.2.4 Outiiers among Cases As in ali multivariate techniques, cases may be
outliers either on individual variables (univariate) or on combinations of variables
(multivariate). Such cases have more influence on the factor solution than other cases.
Consult Chapter 4 and Section 12.8.1.4 for methods of detecting and reducing the
influence of both univariate and multivariate outliers.

LY
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12.3.2.5 Multicollinearity and Singularity 1n PCA, multicollinearity is not a prob-
lem because there is no need to invert a matrix. For most forms of FA and for
estimation of factor scores in any form of FA, singularity or extreme multicollinearity
is a problem. For FA, if the determinant of R and eigenvalues associated with some
factors approach 0, multicollinearity or singularity may be present. -

To investigate further, look at the SMCs for each variable where it serves as
DV with all other variables as IVs. If any of the SMCs is one, singularity is present;
if any of the SMCs is very large (near one), multicollinearity is present. Delete the
variable with multicollinearity or singularity. Chapter 4 and Section 12.8.1.5 provide
examples of screening for and dealing with multicollinearity and singularity.

12.3.2.6 Factorabilityof R A matrix that is factorable should include several mmumzm ; .

correlations. The expected size depends, to some extent, on N (larger sample sizes
tend to produce smaller correlations), but if no correlation exceeds .30, use of FA
is questionable because there is probably nothing to factor analyze. Inspect R for
correlations in excess of .30 and, if none is found, reconsider use of FA, except in
its most exploratory and pragmatic sense. .

High bivariate correlations are, however, not ironclad proof that the correlation

matrix contains factors. It is possible that the correlations are between only. ?_o
variables and do not reflect underlying processes that are simultaneously affecting -

several variables. For this reason, it is helpful to examine matrices of partial cor-
relations where pairwise correlations are adjusted for effects of all other variables.

If there are factors present, then high bivariate correlations become very low partial -

correlations. BMDP, SPSS*, and SAS produce partial correlation matrices. i

Bartlett’s test of sphericity (1954) is a notoriously sensitive test of the hypothesis
that the correlations in a correlation matrix are zero. The test is available in SPSS
EACTOR but because of its sensitivity and its dependence on N, the test is likely to
be significant with samples of substantial size even if correlations are very low,
Therefore, use of the test is recommended only if there are fewer than, say, five cases
per variable.

Several more sophisticated tests of the factorability of R are available through
SPSS* and SAS. Both programs give significance tests of correlations, the anti-image
correlation matrix, and the Kaiser's (1970, 1974) measure of sampling adequacy.
Significance tests of pairs of correlations in the correlation matrix provide an indication
of the reliability of the relationships between pairs of variables. If R is factorable,
numerous pairs are significant. The anti-image correlation matrix contains the neg-
atives of partial correlations between pairs of variables with effects of other variables
removed. If R is factorable, there are mostly small values among the off-diagonal
elements of the anti-image matrix. Finally, Kaiser’s measure of sampling adequacy
is a ratio of the sum of squared correlations to the sum of squared correlations plus
sum of squared partial correlations. The value approaches 1 if partial correlations
are small.? Values of .6 and above are required for good FA.

! BMDP4M prints partial correlations between pairs of variables with effects of other variables
removed through the PARTIAL option so Kaiser's measure of sampling adequacy could {with some pai)
be hand-calculated.

Cadie
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42.3.2.7 Outliers among Variables After FA, in both exploratory and confirmatory
FA. variables that are unrelated to others in the set are identified. These variables
are usually not correlated with the first few factors although they often correlate with
factors extracted later. These factors are usually unreliable, both because they account
for very little variance and because factors that are defined by just one or two variables
are not stable. Therefore one never knows whether or not these factors are *‘real.”
Suggestions for determining reliability of factors defined by one or two variables are
in Section 12.6.2.

In exploratory FA, if the variance accounted for by a factor defined by only
one or two variables is high enough, the factor is interpreted with great caution or
ignored, as pragmatic considerations dictate. In confirmatory FA, the factor represents
either a promising lead for future work or (probably) error variance, but its inter-
pretation awaits clarification by more research.

A variable with a low squared multiple correlation with all other variables and
low correlations with all important factors is an outlier among the variables. The
variable is usually ignored in the current FA and either delieted or given friends in
future research. Screening for outliers among variables is illustrated in Section
12.8.1.7.

12.3.2.8 Outlying Cases amongtheFactors InFA and PCA, cases may be unusual
with respect to their scores on the factors. These are cases that have unusually large
or small scores on the factors as estimated from factor score coefficients. The deviant
scores are from cases for which the factor solution is inadequate. Examination of
these cases for consistency is informative if it reveals the kinds of cases for which
the FA is not appropriate.

If BMDP4M is used, oulying cases among the factors are cases with large
Mahalanobis distances, estimated as chi square values, from the location of the case
in the space defined by the factors to the centroid of all cases in the same space. 1If
scatterplots between pairs of factors are requested, these cases appear along the
borders. Screening for these outlying cases is in Section 12.8.1.8.

12.4 FUNDAMENTAL EQUATIONS FOR FACTOR
ANALYSIS

Because of the variety and complexity of the calculations involved in preparing the
correlation matrix, extracting factors, and rotating them, and because, inour judgment,
little insight is produced by demonstrations of some of these procedures, this section
does not show them all. Instead, the relationships between some of the more important
matrices are shown, with an assist from SPSS* FACTOR for underlying calculations.

Table 12.1 lists many of the important matrices in FA and PCA. Although the
list is lengthy, it is composed mostly of matrices of correlations (between variables,
between factors, and between variables and factors), matrices of standard scores {(on
variables and on factors), matrices of regression weights (for producing scores on
factors from scores on variables), and the pattern matrix of unique relationships
between factors and variables after oblique rotation.
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TABLE 12.1 COMMONLY ENCOUNTERED MATRICES IN

FACTOR ANALYSES
Label Name Rotation Size* Description

R Correlation matrix Both orthogonal and  p X p Matrix of correlations betwoen
oblique variables .

FA Variable matrix Both orthogonal and NXxp Matrix of standardized o?
oblique served variable scores

F Factor-score matrix Both orthogonal and N X m  Matrix of standard scores on
oblique factors or components

A Factor loading matrix ~ Orthogonal p X m  Matrix of regressionlike K

Pattern matrix Qblique weights used to esti n—n -

unique contribution of each -
factor to the variance ina . -

variable. If orthogonal, also
correlations between varia. i

bles and factors

AT
B Factor-score coeffi- Both orthogonal and  p X m  Matrix of regression weights 5. -

cients matrix oblique used (o generate factor

scores from variables ™

C Structure matrix® Oblique p X m  Matrx of correlations _82.8-
variables and Aoonann-o&,kﬂ, -

factors - LHA

® Factor correlation Oblique m X m  Matnx of correlations among ™ -
matrix factors L
L Eigenvalue matrix® Both orthogonal and  m X m  Diagonal matrix of eigenval- 7
oblique ues, one per factorr 3 n.u
v Eigenvector matrix® Both orthogonal and p x m  Matrix of eigenvectors, one
oblique vector per eigenvalue .00t

* Rew by column dimensions where S

p = number of variables
N = number of subjects
m = number of factors or components

..—unﬁmaﬁx&oarm‘_rnE.:nEHHun...:m_mwn_&m.Ioincn-.s.nEﬁ:moamsu«u_dmn:nn..nmca.on.ﬂﬁﬁi
cross-products matrix elsewhere and will use C for the structure mattix here. .

© Also called characteristic roots or latent roots.
4 Also called characteristic veclors.

* If the matrix is of full rank, there are actually p rather than m eigenvalues and eigenvectors. Only m are of imerest,
howevet, so the remaining p — m are not displayed.

LR

Also in the table are the matrix of eigenvalues and the matrix of their come-
sponding eigenvectors. Eigenvalues and eigenvectors are discussed here and in Ap-
pendix A, albeit scantily, because of their importance in factor extraction, the fre-
quency with which one encounters the terminology, and the close association betweca
eigenvalues and variance in statistical applications. -

A data set appropriate for FA consists of numerous subjects each measured on
several variables. A grossly inadequate data set appropriate for FA is in Table 12.2.
Five subjects who were trying on ski boots late on a Friday night in January wer®
asked about the importance of each of four variables to their selection of a ski resort.
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TABLE 12.2 SMALL SAMPLE OF HYPOTHETICAL DATA
FOR ILLUSTRATION OF FACTOR ANALYSIS

Variables
Skiers COST LIFT DEPTH POWDER
5 32 64 65 67
53 61 37 62 65
5, 59 40 45 43
S, 36 62 M 35
Ss 62 46 43 40

Correlation matrix

COsT LIFT DEPTH POWDER

DEPTH

POWDER

The variables were cost of ski ticket (COST), kind of ski lift (LIFT), depth of snow
(DEPTH), and kind of snow (POWDER). Larger numbers indicate greater importance.
The researcher wanted to investigate the pattern of relationships among the variables
in an effort to understand better the dimensions underlying choice of ski area.

Notice the pattern of cotrelations in the correlation matrix as set off by the
vertical and horizontal lines. The strong correlations in the upper left and lower right
quadrants show that scores on COST and LIFT are related, as are scores on DEPTH
and POWDER. The other two quadrants show that scores on DEPTH and LIFT are
unrelated, as are scores on POWDER and LIFT, and so on. With luck, FA will find
this pattern of correlations, easy to see in a small correlation matrix but not in a very
large one.

An important theorem from matrix algebra indicates that, under certain con-
ditions, matrices can be diagonalized. Correlation and covariance matrices are among
those that often can be diagonalized. When a matrix is diagonalized, it is transforaned
into a matrix with numbers in the positive diagonal® and zeros everywhere else. In
this application, the numbers in the positive diagonal represent variance from the
correlation matrix that has been repackaged as foilows.

L = V'RV (12.1)

3 The positive diagonal runs from upper left to lower right in a matrix.
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TABLE 12.3 EIGENVECTORS AND

CORRESPONDING
EIGENVALUES FOR
THE EXAMPLE
Eigenvector 1 Eigenvector 2
—.283 651
an - .685
658 252
675 207
Eigenvalue 1 Eigenvalue 2
2.00 1.91

Diagonalization of R is accomplished by post- and premultiplying it by the
matrix V and its transpose.

C s

The columns in V are called eigenvectors, and the values in the main diagonal of.

L are called eigenvalues. The first eigenvector corresponds to the first cigenvalue,
and so forth. R

Because there are four variables in the example, there are four eigenvalues with -

their corresponding eigenvectors. However, because the goal of FA is to summarize
a pattern of correlations with as few factors as possible, and because each eigenvalue

corresponds to a different potential factor, usually only factors with large eigenvalues
are retained. These few factors duplicate the correlation matrix as faithfully as possible:

In this example, when no limit is placed on the number of factors, eigenvalucs
of 2.02, 1.94, .04, and .00 are computed for each of the four possible factors. Only
the first two factors, with values over 1.00, are large enough to be retained in
subsequent analyses. FA is rerun specifying extraction of just the first two factors;
they have eigenvalues of 2.00 and 1.91, respectively, as indicated in the Table 12.3.

Using Equation 12.] and inserting the values from the example, we cobtain -,

1.000 ~.953 —.055 —.130 | [-.283 651

L= ﬁ.nmu 177 .658 .SJ — 953 1.000 —.091 —.036 177 — 685
=| 651 —.685 252 207 |-.055 —.091 1.000 .990| [ .658 252
—.130 —.036 990 1.000] [ .675 .207

200 .00
.00 191

(All vatues agree with computer output. Hand calculation may produce discrepancies
due to rounding error.) _

The matrix of eigenvectors premultiplied by its transpose produces the identity
matrix with ones in the positive diagonal and zeros elsewhere. Therefore, pre- and
postmultiplying the correlation matrix by eigenvectors does not change it s0 much
as repackage it. :
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VvV =1 {12.2)

For the example:

—.283 651
- 283 177 658 .675 177 —.685| _ | 1.000 .000
651 —.685 252 .207 .658 252 ~ | .000 1.000
675 207

The important point is that because correlation matrices often meet requirements
for diagonalizability, it is possible to use on themn the matrix algebra of eigenvectors
and eigenvalues with FA as the result. When a matrix is diagonalized, the information
contained in it is repackaged. In FA, the variance in the correlation matrix is condensed
into eigenvalues. The factor with the largest eigenvalue has the most variance and
0 on, down to factors with small or negative eigenvalues that are usually omitted
from solutions.

Calculations for eigenvectors and eigenvalues are extremely laborious and not
particularly enlightening (although they are illustrated in Appendix A for a small
matrix). They require solving p equations in p unknowns with additional side con-
straints and are rarely performed by hand. Once the eigenvalues and cigenvectors are
known, however, the rest of FA (or PCA) more or less ‘‘falls out,” as is seen from
Equations 12.3 to 12.6.

Equation 12.1 can be reorganized as follows:

R = VLV’ (12.3)

The correlation matrix can be considered a product of three matrices—the
matrices of eigenvalues and corresponding eigenvectors.

After reorganization, the square root is taken of the matrix of eigenvalues.
VVLVLV (12.4)
(VVD) (VLV)

If V\/L is called A, and VLV’ is A’, then

I

R

or R

H

R = AA’ (12.5)

The correlation matrix can also be considered a product of two matrices, each
a combination of eigenvectors and the square root of eigenvalues.

Equation 12.5 is frequently called the fundamental equation for FA.* It represents
the assertion that the correlation matrix is a product of the factor loading matrix, A,
and its transpose.

4 In order to reproduce the correlation matrix exactly, as indicated in Equations 12.4 and 12.5,
all eigenvalues and eigenvectors are necessary, not just the first few of them.
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Equations 12.4 and 12.5 also reveal that the major work of FA (and PCA) is
calculation of eigenvalues and eigenvectors. Once they are known, the {unrotated)
factor loading matrix is found by straightforward matrix mulitiplication, as follows,

A= VVL (12.6)
For the example:
o 283 651 ~.400 900
177 —.685] [ v2Z00 O 251 —.947
A= 658 252 0 VIolf=1 932 .38
675 207 956 .286

B )

. L i . REERRY: 1t
The factor loading matrix is a matrix of correlations between factors and

variables. The first column is correlations between the first factor and each variable
in turn, COST (— .400), LIFT (.251), DEPTH (.932), and POWDER (.956). The " .

second column is correlations between the second factor and each variable EE:K
COST (.900), LIFT (—.947), DEPTH (.348), and POWDER (.286). A factor is,
interpreted from the variables thatare highly correlated with it—that have highloadings, ' ¢
on it. Thus the first factor is primarily a snow conditions factor (DEPTH and; . -
POWDER), while the second reflects resort conditions {COST and ruud.;.ﬁww..‘,.,
negative correlation indicates that more attractive lifts are also more costly.). - " -
Notice, however, that all the variables are correlated with both factors to.a "
considerable extent. Interpretation is fairly clear for this hypothetical example, but .
most likely would not be for real data. Usually 2 factor is most interpretable s&g v
a few variables are highly correlated with it and the rest are not. A
Rotation is ordinarily used after extraction to maximize high correlations and
minimize low ones. Numerous methods of rotation are available (see Section 125.2) -
but the most commonly used, and the one illustrated here, is varimax. Varimax i§
a wariance maximizing procedure. The goal of varimax rotation is to maximize the
variance of factor loadings by making high loadings higher and low ones lower m.on
each factor. o
This goal is accomplished by means of a transformation matsix A (as defined

in Equation 12.8), where . %

¢

Anromca A = A oiaced GN\D

The unrotated factor loading matrix is multiplied by the transformation matrix N ,
to produce the rotated loading matrix. _ )

For the example:

-.400 900 [-os6 98] . .
o | st -oa7ifese -5t -0 ~ 977
owted T | 932 348 | [ 325 946 994 026
956 .286 997 - .040
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TABLE 12.4 RELATIONSHIPS AMONG LOADINGS, COMMUNALITIES,
SSLs, VARIANCE, AND COVARIANCE OF ORTHOGONALLY
ROTATED FACTORS

Factor 1 Factor 2 Communalities (h?) {
O—J.JQ
COST ~.086 981 = 970 —) eI e
2 R Y

LIFT -.071 - 977 Iat = 960
DEPTH 994 026 Sat = 989 A2 N
POWDER .997 —.040 32 = 9% Q.QQQ.%LAN\“ _ ¢

SSLs Z4 = 1.9% It = 1919 3.915 e
Proportion of o |

variance .50 .48 98
Proportion of

covariance .51 .49

Compare the rotated and unrotated loading matrices. Notice that in the rotated matrix
the low correlations are lower and the high ones higher than in the unrotated loading
matrix. Emphasizing differences in loadings facilitates interpretation of factors by
making unambiguous the variables that correlate with a factor.

The numbers in the transformation matrix have a spatial interpretation.

_|eosy —sind _
A= sin {s cos ¥ (12.3)

The transformation matrix is a matrix of sines and cosines of an angle .

For the example, the angle is approximately 19°. That is, cos 19 = 946 and sin 19
~ .325. Geometrically, this corresponds to a 19° swivel of the factor axes about the
origin. Greater detail regarding the geometric meaning of rotation is in Section
12.5.2.3.

Once the rotated loading matrix is available, other relationships are found, as
in Table 12.4. The communality for a variable is the variance accounted for by the et
factors. It is the squared muitiple correlation of the variable as predicted from the
factors. Communality is the sum of squared loadings (SSL) for a variable across
factors. In Table 12.4, the communality for COST is (—.086)* + 9817 = .970.

That is, 97% of the variance in COST is accounted for by Factor 1 plus Factor 2.

The proportion of variance in the set of variables accounted for by a factor is #
the SSL for the factor divided by the number of variables (if rotation 1s orthogonal).® ®
For the first factor, the proportion of variance is [(— 086)2 + (—.071)7 + 994
+ .9977)/4 = 1.994/4 = .50. Fifty percent of the variance in the variables is
accounted for by the first factor. The second factor accounts for 48% of the variance

5 For unrotated factors only, the sum of the squared loadings for a factor is equal to the eigenvalue.
Once loadings are rofated, the sum of squared loadings is called SSL and is no longer equal to the
eigenvalue.
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in the variables and, because rotation is orthogonal, the two factors together account
for 989% of the variance in the variables.

7 The proportion of variance in the solution accounted for by a factor—the

|_proportion of covariance—is the SSL for the factor divided by the sum of commy-
nalities (or, equivalently, the sum of the SSLs). The first factor accounts for 51%of .-
the variance in the solution (1.994/3.915) while the second factor accounts for 49% -
of the variance in the solution (1.919/3.915). The two factors together account for
all of the covariance. ey

. '

The reproduced correlation matrix for the example is generated using Equation -
12.5: A

— 086  .981
— |-om —9m|[-086 -om1 994 997
R=1| ‘994 026|| .981 -.977 .026 —.040
| 997 —.040
970 —.953 —.059 —.125
| -3 62 —o098 —.033
=| -059 -.098 989 .99
| —125 -.033 990 9%

. : PP
Natice that the reproduced correlation matrix differs slightly from the original cor-
relation matrix. The difference between the original and reproduced correlation ma-
trices is the residual correlation matrix: S

R..=R-R (12.
The residual correlation matrix is the difference between the observed nonn_»amﬁ;.

matrix and the reproduced correlation matrix. A

oL

For the example, with communalities inserted in the positive diagonal of w

970 —.953 —.055 —.130 000 000 .004 —.005

_1—953 960 —.091 —.036 | | .000 —.002 .007 —.003|"
Ree=|_ 055 —.091 989 .990 004 007 .000 .000]|
130 —.036 .90 .99 | |-.005 —.003.000 000

000 000 .004 —.005

| 000 —.002 007 —.003

=| oo4a 007 000 000

| 005 —.003 000 .000

In a “‘good’’ FA, the numbers in the residual correlation matrix are small conw_wmn...,
there is little difference between the original correlation matrix and the correlation
matrix generated from factor loadings. o

Scores on factors can be predicted for each case once the loading matrix 15
available. Regression-like coefficients are computed for weighting variable scores 0
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exarele
produce factor scores. Because R ™ is the inverse of the matrix of correlations among
variables and A is the matrix of correlations between factors and variables, Equation
12.10 for factor score coefficients is similar to Eq. 5.6 for regression coefficients in
multiple regression.

B=R ‘A (12.10)

Factor score coefficients for estimating factor scores from variable scores are a
product of the inverse of the correlation matrix and the factor loading matrix.

For the example:®

25485 22,689 —31.655 35.479 |[|—.086  .981
B = 22.689  21.386 —24.831 28.312 [{—-.072 -.978
—31.655 —24.831 99917 —103.950 994 027
| 35479 28312 —103.950  109.567 997 —.040
0.082  0.537
_10.054 -0.461
10190 0.087
[0.822 —0.074

To estimate a subject’s score for the first factor, then, all of the subject’s scores on
variables are standardized and then the standardized score on COST is weighted by
0.082, LIFT by 0.054, DEPTH by 0.190, and POWDER by 0.822 and the results
are added. In matrix form,

F=1ZB (12.11)
Factor scores are a product of standardized scores on variables and factor score
coefficients.

For the example:

-1.22 1.14 I.15 1.14 0082  0.537
0.75 —-1.02 092 1.0l 0.054 —0.461
F=1| 061 —-078 -036 -047 : ’
0.190  0.087
—0.95 0.98 —120 —1.01 || ey o074
| 082 —-0.30 -051 —-0.67 ) )
[ 1.12 —-1.16 %
1.01 0.88
= |-0.45 0.69
-1.08 -0.99
L—0.60  0.58

® The numbers in B are different from the factor score coefficients generated by computer for the
small data set. The difference is due 1o rounding error following inversion of a multicollinear correlation
matrix.
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The first subject has an estimated standard score of 1.12 on the first factor and — 1.1
on the second factor, and so on for the other four subjects. The first subject values
the snow factor highly and the cost factor low. The second subject values both the
snow factor and the cost factor; the third subject values the cost factor more than the
snow factor, and so forth, The sum of standardized factor scores across subjects for
a single factor is zero. .

Predicting scores on variables from scores on factors is also possible. The
equation for doing so is

Z = FA’ (12.12)

Predicted standardized scores on variables are a product of scores on factors
weighted by factor loadings.

FUNDAMENTAL EQUATIONS FOR FACTOR ANALYSIS 15

Ipepta = a3 F; + awF;
Zpowper = AqfF| + a,F,
A score on an observed variable is conceptualized as a properly weighted and summed
combination of the scores on factors that underlie it. The underlying processes are
factors; the outward manifestations are scores on variables, driven by underlying
processes.

All the relationships mentioned thus far are for orthogonal rotation. Most of
the compiexities of orthogonal rotation remain and several others are added when
oblique (correlated) rotation is used. Consult Table 12.1 for a listing of additional
matrices and a hint of the discussion to foliow.

SPSS* FACTOR is run on the data from Table 12.2 using the default option
for oblique rotation (cf. Section 12.5.2.2) to get values for the pattern matrix, A,
and factor-score coefficients, B.

In oblique rotation, the loading matrix becomes the pattern matrix. Values in
the pattem matrix, when squared, represent the unique contribution of each factor
to the variance of each variable but do not include segments of variance that come
from overlap between correlated factors. For the example the pattern matrix following

k. obligue rotation is

-.079 981
_|-.078 —.978
A= 994 .033

997 —.033

For example:
LIz —1.16
Lol o o |[-oss —om2 994 99
048 0Nl ost -7 027 040
| 060 058
-123 105 108 L6
078 ~093 103 097
=| 072 -064 -043 —048
~088 105 -1L10 —1.04

L 0.62 -052 -0.58 —062

That is, the first subject (the first row of Z) is predicted to have a standardized score

The first factor makes a unique contribution of (- .079)? to the variance in COST,
t (—.078)% to LIFT, .994% to DEPTH and .997* to POWDER.
Factor-score coefficients following oblique rotation are also found:

of —1.23 on COST, 1.05 on LIFT, 1.08 on DEPTH, and 1.16 on 10€Umw.._§w.u : 0.104  0.584
the reproduced correlation matrix, these values are similar to the observed values if & B = 0081 —0421
the FA captures the relationship among the variables. Sk 0.159 -0.020

It is helpful to see these values written out because they provide an insight into 0.856  0.034

how scores on variables are conceptualized in factor analysis. For example, for the ;.

first subject,

Applying Equation 12.11 to produce factor scores results in the following values:

—1.23 = —.086(1.12) + .981(—1.16) S it [o104 058

1.05 = —.072(1.12) — .978(—1.16) F=| 06l -078 —036 —047 w.wmw |m.mww

1.08 = .994(1.12) + .027(—1.16) o —095 098 —120 —LOL|| "ecl  '0h,

1.16 = .997(1.12) — .040(—1.16) L 082 -030 -051 —067JL .

[ 112 —~1.18
Or, in algebraic form, 1.01 0.88
=1-046 0.68
Zeost = anfy + anf, ~1.07 —0.98

urr = anFy + anf,

L —0.59 0.59
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Once the factor scores are determined, correlations among factors can be oh.
tained. Among the equations used for the purpose is

1
b=|——)F
v_1)FF (12.13)

One way to compute correlations among factors is from cross products of stan-
dardized factor scores divided by the number of cases minus one.

The factor correlation matrix is a standard part of computer output following oblique
rotation. For the example:

112 —118
oo L[ 112 Lot —046 —107 059 |w.mw m.mm
2| -1.18 088 068 -098 0.59]| 0 _ooe
~059 059
[ 100 -o01 z
T 1001 100

The correlation between the first and second factor is quite low, —.0l. For this
example, there is almost no relationship between the two factors, although considerable
correlation could have been produced had it been warranted. Ordinarily one uses
orthogonal rotation in a case like this because complexities introduced by oblique
rotation are not warranted by such a low correlation among factors. "

However, if oblique rotation is used, the structure matrix, C, is the correlations
between variables and factors. These correlations represent both the unique rela-
tionship between the variable and the factor (shown in the pattern matrix) and the
relationship between the variable and the variance a factor shares with other factors.
The equation for the structure matrix is

C = AD® (12.14)

The structure matrix is a product of the pattern matrix and the factor correlation
matrix.

For example:
—- 079 981 - 069 982
C = — 078 -~ 978 1.00 —.01f 1-.088 —.977
- .994 033{1—-01 1o0| .994 .023
997 —.033 997 - .043

COST, LIFT, DEPTH, and POWDER correlate — 069, — 088, .994, and .oo....i::
the first factor and .982. — 977, .023, and — .043 with the second factor, Rmvan:eiu_.
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There is some debate as to whether one should interpret the pattern matrix or
the structure matrix following oblique rotation. The structure matrix is appealing
because it is readily understood. However, the correlations between variables and
factors are inflated by any overlap between factors. The problem becomes more severe
as the correlations among factors increase and it may be hard to determine which
variables are related to a factor. On the other hand, the pattern matrix contains values
representing the unique contributions of each factor to the variance in the variables.
Shared variance is omitted (as it is with standard multiple regression), but the set
of variables that composes a factor is usually easier to see. If factors are very highly
correlated, it may appear that no variables are related to them because there is almost
no unique variance once overlap is omitted.

Most researchers interpret and report the pattern matrix rather than the structure
matrix. However, if the researcher reports either the structure or the pattern matrix
and also @, then the interested reader can generate the other using Equation 12.14
as desired.

In oblique rotation, R is produced as follows:

R=CA (12.15)

The reproduced correlation matrix is a product of the structure matrix and the
transpose of the pattern matrix.

Once the reproduced correlation matrix is available, Equation 12.9 is used to generate
the residual correlation matrix to diagnose adequacy of fit in FA.
Examples of setup and output for the example using SPSS*, BMDP, SAS, and
SYSTAT are shown in Tables 12.5 through 12.8. Principal factor analysis with varimax
rotation is shown for SPSS* FACTOR, BMDP4M, and SAS FACTOR. For SYSTAT
FACTOR, version 3.0, principal components is the only available method of extraction, -
SPSS* FACTOR (Table 12.5) begins by printing out SMCs for each variable, Pud
labeled COMMUNALITY in the INITIAL STATISTICS portion of the output. In a M
parallel but unrelated table, EIGENVALUEs, PCT OF VARiance, and percent of ~ -
variance cumulated over the four factors (CUM PCT) are printed out for the four .AN.UM
initial factors. (Be careful not to confuse factors with variables.) The program then anﬂ.\.,
indicates the number of factors extracted with eigenvalues greater than 1 (the default ﬂc..ﬂ.
value).
For the two extracted factors, an unrotated FACTOR loading MATRIX is then
printed. In the output labeled FINAL STATISTICS are final COMMUNALITY values
for each variable (h* in Table 12.4), and, parallel with them, EIGENVALUEs for
the two retained factors (see Table 12.3), the PCT OF VARiance for each factor and
CUM PCT of variance accounted for by successive factors. The ROTATED FACTOR -
loading MATRIX, which matches loadings in Table 12.4 is given along with the
FACTOR TRANSFORMATION MATRIX (Equation 12.8) for orthogonal varimax
rotation with Kaiser normalization. _—
BMDP4M (Table 12.6) first prints out the CORRELATION MATRIX for the
variables, and then the COMMUNALITIES (k%) for each variable, OBTAINED FROM
2 FACTORS with eigenvalues greater than 1. In the next table, eigenvalues are given
for all 4 factors along with two types of cumulative proportion of variance, neither



TABLE 125 SETUP AND SPSS' FACTOR OUTPUT FOA FACTOR
ANALYSIS ON SAMPLE DATA OF TABLE 12.2

TITLE SMALL SAMPLE FACTOR ANALYSIS
FILE HANDLE TAFE1Y
DATA L1ST FILE=TAPE1? FREE
/SUBJNO «COSTLIFT /DEPTH .FORDER
FACTOR VARIABLES=COST (LIFT/DEPTH POWDER/

EXTRACTION=PAF/

ANALYSTS NUMBER 1 LISTMISE DELETION OF CASES W1TH MISSING VALUES

EXTRACTION 1 FQOR ANALYSIS 1. PRINCIPAL AXIS FACTORING (PAF)

INITIAL STATISTICS:

VARIABLE COMMUNALITY FACTOR E1GENVALUE PCT OF VAR

cosT -96078 1 2.¢1631 50.4

LIFT .95324 2 1.94151 48,5

DEPTH . 909929 3 +03781 .9

POHDER 99087 4 .00437 o1
PAF EXTRACTED 2 FACTORS. 4 ITERATIONS REQUIRED.

FACTOR MATRIX:

FACTOR 1 FACTOR 2
COsT -.40027 »89978
LIFT - 25060 -,847086
DEPTH .931389 .34773
POWDER .95536 28815

FINAL STATISTICS:

UVARTAOLE COMMUNALITY FACTDR EIGENVALUE PCT OF VAR
cosT . 96983 1 2.00473 50.1
LIFT +93%973 2 1.90933 av.?
DEPTH .98877

POWDER . 99574

[ FACTOPR ANALYSIS - -

WARTMAX ROTATION t FOR EXTRACTION 1IN ANALYSIS | - KAISER NORMALIZATION.

VARIHAX CONVERGED IN J ITERATIONS,

ROTATED FACTOR MATRIX:

FACTOR 1 FACTOR 2
cosT -. 08531 -.98104
LIFY -.07100 87708
DEPTH .89403 -.025688
POWDER .99706 104028

FACTOR TRANSFORHATION MATRIX:

FACTOR 1 FACTOR 2

FACTOR 945863 -32519
FACTOR 2 32519 -+ 94565

CumMm PCT

30.4
98.9
98.9
100.0

CUH PCT

K
i3
8
i3
h

TABLE 126 SETUP AND SELECTED BMDP4M OUTPUT FOR FACTOR
ANALYSIS ON SAMPLE DATA OF TABLE 122

/PROGBLEM TITLE 15 'SMALL SAMPLE FACTOR ANALYSIS THROUGH BMDPZM ‘.,
ZINPUT VARIABLES ARE 3. FORMAT [S “{AZ.4F4.D) ",
/WARTABLE NAHES ARE SUBJNO. COST, LIFT. DEPTH. POHDER .
LABEL 1S SUBJNO.
/FACTOR METHOD=PFA.
/END

CORRELATION MATRIX

cosT LIFT DEPTH POWDER
2 3 4 5
COST 2 1.000
LIFT 3 -0.953 1.000
DEPTH a -0,055 -0,091 1.000
POWGER 3 -0.130 -0.036 0.8980 1.000
COMMUNALITIES OBTAINED FROM 2 FACTORS AFTER a ITERATIONS.

THE CORMUNALITY OF A VARIABLE IS ITS SQUARED MULTIPLE
CORRELATION WITH YHE FACTCRS.

2 CosT 0.9638
3 LIFT 0.9597
a QEPTH 0.98E8
5 POMDER 0.9957
FACTOR VAR]IANCE CUMULATIVE PROPORTION GF VARIANCE CARMINES
EXPLAINED IN DATA SPACE IN FACTOR SPACE THETA
1 2.0047 ¢.5110 0.3122 Q.6810
2 1.9093 0,8977 1.0000
3 Q.0090 1.0000
4 -0.0103

TOTAL VARIANCE 1S DEFINED AS THE SUM DF THE POSITIVE EIGEN VALUES OF THE
CORRELATION HATRIX.

NEGATIVE VALUES FOR VARIANCE EXPLAINED INDICATE THE DEGREE
TO WHILH THE COMMUNALITIES HAVE BEEN UNDERESTIMATED.

LARGE MEGATIVE VALUES FOR VARIANCE EXPLAINED INDICATE THAT
THE COYARIANCE OR CORRELATION MATRIX 1S5 POORLY ESTIMATED.

UNRCTATED FALTOR LDADINGS (PATTERN)

FACTOR FACTOR

) 2

€osT 2 -0.400 -0.800
LIFT 3 0.251 6.947
DEPTH 4 0.932 -0.34a8
POWDER 5 ©.956 -0.2B6
ue 2.40905 L.8909

THE UP FOR EACH FACTOR IS THE SUM OF THE SQUARES OF THE
ELEHENTS OF THE COLUMN DF THE FACTOR LOADING WATRIX
CORRESPONOING TO THAT FACTOR. THE UP IS THE VARIANCE
EXPLAINED BY THE FACTOR,

DR THOGONAL ROTATION: GAMMA = 1.00
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TABLE 12.6 {Continued)

ROTRTEC FACTOR LDADINGS (PATTERN)

FACTDR FACTOR

1 2

CO57 2 -0.086 0.981
LIFT 3 -6.071 -0.977
DEPTH a ©.994 0.0Z8
FOHOER 3 0.987 -0.040
up 1.995 1.919

THE F FOR EACH FACTOR IS THE SUM OF THE SOUARES DF THE
£LEAENTS OF THE COLUMN OF THE FACTOR PATTERN MATRIX
CORRESPONDING TO THAT FACYOR. WHEN THE ROTATION IS
CRTHOGONAL s THE WP 1S THE VARIANCE EXPLAINED BY THE FACTOR.

FACTOR SCORE COVARIANCE (COMPUTED FROM FACTOR SCORES)

FACTOR FACTOR

1 2
FACTOR 1 0.897
FACTOR 2 -0, 000 0.982

of which exactly matches that of SPSS*. CARMINES THETA is a measure of the Foi

reliability of the first principal component that is closely related to Cronbach’s »Er».@ i
UNROTATED FACTOR LOADINGS are given for each variable on the two 3
factors, along with the SSLs for each factor, labeled VP. This is followed by ROTATED 24! -
FACTOR LOADINGS, with SSLs again shown as VP. Finally, BMDPAM prints out ;%
the FACTOR SCORE COVARIANCE matrix, in which the off-diagonal elements are
set to zero by the nature of orthogonal rotation. The diagonal elements are the SMCs-
of each factor with the variables. -
SAS FACTOR (Table 12.7) requires a bit more instruction to produce a principal
factor analysis with orthogonal rotation for two factors. You specify the initial com-
munalities (PRIOR = SMC), number of factors to be extracted (NFACTOR =2) and
the type of rotation (ROTATE=V). PRIOR COMMUNALITY ESTIMATES-
SMCs-—are given, followed by EIGENVALUES for all four factors; also given isthe - '
TOTAL of the eigenvalues and their AVERAGE. The next row shows DIFFERENCEs -
between successive eigenvalues. For example, there is a small difference between

the first and second eigenvalues (0.099606) and between the third and fourth ei

gen-
values (0.020622), but a large difference between the second and third nmmanﬁ_ﬁ
(1.897534), PROPORTION and CUMULATIVE proportion of variance arc thea -,
printed for each factor.
The FACTOR PATTERN matrix contains unrotated factor loadings for the first -
two factors. SSLs for each factor are in the table labeled VARIANCE EXPLAINED ..
BY EACH FACTOR. Both FINAL COMMUNALITY ESTIMATES (k%) and the =~
TOTAL A are then given. The transformation matrix for orthogonal rotation Amncnaoa -
12.8) is followed by the rotated factor loadings in the ROTATED FACTOR PATTERN .~
matrix. SSLs for rotated factors—VARIANCE EXPLAINED BY EACH FACTOR— .
appear below the loadings. FINAL COMMUNALITY ESTIMATES are then Rvnmﬁg. I
SYSTAT FACTOR (Table 12.8) currently provides only principal componeats -
extraction and requires instructions for both number of factors (EIGEN = 2) and type

TABLE 127 SETUP AND SAS FACTOA QUTPUT FOR FACTOR

ANALYSIS OF SAMPLE DATA OF TABLE 122

DATA SSAMPLES
INFILE TAPELTZS
INPUT SUB.JND COST LIFT DEPTH POWDERS
PROC FACTOR
PRIOR=5MC
NFACTORS=Z
ROTATE=V3
YAR COST LIFT DEPTH POWDER!

INITIAL FACTOR METHOD: PRINCIPAL FACTORS

PRIDR COMMUNALITY ESTIMATES: SHC

COsT LIFT DEPTH POUDER
0.960761 ©.953241 ©.39689992 0.990873

EIGENYALUES OF THE REDUCED CORRELATION MATRIX: TOTAL = 3.89ap7 AVERAGE = 0.9737LT
2 3 4
EIGENVALUE 2.002343 1,902738 0.0052¢4 -0.0135418
DIFFERENCE 0.099606 1.897534 0.020B22
PROPORTION 0.5i141 0.a885 Q,0013 -9,0040
CUMULATIVE n.5141 1.00Z€ 1.4040 1.0000

Z FACTORS HILL BE RETAIMED BY THE NFACTOR CRITERICN

FACTOR PATTERN

FACTOR1 FACTOR2

cosT -0.38290 0.90476
LIFT 0.723317 -0.95009
DEPTH 9.93844 0.33083
POWDER 0,95953 Q0.26820

YARIANCE EXPLAINED BY EACH FACTOR

FALTOR1 FACTORZ
2.002343 1.802738

FINAL COMMUNALETY ESTIHATES: TOTAL = 3,805068¢

CasT LIFT DEPTH POMDER
¢.9B5188 ©.957031 0.990217 ¢.992634

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2
1 0.851480 -0,3078%
2 ©.30785 0.9514¢

ROTATED FACTOR FATTERN

FACTOR! FACTORZ

LOST -0.08366 6.878290
LIFT -0.07075 -0.07372
DEPTH ©¢.99a76 0.02591
POWDER 0,99548% -0.0a033

UARIANCE EXPLAINED BY EACH FACTDFR

FACTOkR! FACTORZ
t.992897 1.912164
FINAL COMMUNALITY ESTIMATES: TOTAL = 3.905081
caost LIFT DEPTH FOHDER
1.965198 0.957031  6,990217 ©.082634




TABLE 12.8 SETUP aND SYSTAT FACTOR OUTPUT FOR PRINCIPAL
COMPONENTS ANALYSIS OF SAMPLE DATA OF

TABLE 122

USE TAPELT
OUTPUT=CUTFILE
EIGEN=T

ROTATE=UARIHAX

FACTOR COST LIFT DEFTH POWDER

MATRI: TO BE FACTORED

COosT LIFT
COsT 1.000
LIFT -0.9%3 1.000
DEPTH -0.035 -0.081
POWOER -0. 130 -0.036

LATENT RDOTS (EIGENYALUES)

2,016
COMPONENT LOADINGS
1
CcOsT -0,.300Q
LIFT 0,357
CEFTHK 0,891
FOHDER n.4919

UARIANCE EXPLAIMED BY CDHMPONENTS

1

2.018

PERCENT OF TOTAL UVARIANCE EXPLAINED

50,408
ROTATED LOADINGS
1
COST -0.CB7
LIFT -0.072
DEPTH ©.997
POHDER 0.998

UARIANCE EXPLAINED BY ROTATEL COMFD

z.003

PERCENT OF TOTAL WARIANCE EXPLAINED

SC.0E7

1.8a2

0.856
-0.92%
0.449
9,380

1.942

4B8.338

0.988
-¢.988
0.026
-G.0480

NENTS

a6.879

DEPTH PDWOER
1.000
0,990 1.000
3 4
%.038 0,004
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of rotation. The output includes the correlation matrix—MATRIX TO BE FAC-
TORED—and the eigenvalues for all four factors. The unrotated loading matrix
(COMPONENT LOADINGS) is printed, followed by the SSLs (VARIANCE EX-
PLAINED BY COMPONENTS) and the percent of variance for each component.
That information is repeated for the rotated solution after the matrix of ROTATED
LOADINGS.

12.5 MAJOR TYPES OF FACTOR ANALYSIS

Numerous procedures for factor extraction and rotation are available. However, only
those procedures available in the BMDP, SPSS*, SAS, and SYSTAT packages are
summarized here. Other extraction and rotational techniques are described in Mulaik
(1972), Harman (1976, 1983), and Rummel (1970).

12.5.1 Factor Extraction Techniques

Among the extraction techniques available in the four packages are principal com-
ponents (PCA), principal factors, maximum likelihood factoring, Rao’s canonical
factoring, image factoring, alpha factoring, and unweighted and generalized least
squares factoring (see Table 12.9). Of these, PCA and principal factors are the most
commonly used.

All the extraction techniques calculate a set of orthogonal components or factors
that, in combination, reproduce R. Criteria used to establish the solution, such as
maximizing variance or minimizing residual correlations, differ from technique to
technique. But differences in solutions are small for a data set with a large sample,
numerous variables and similar communality estimates. In fact, one testof the stability
of a FA solution is that it appears regardless of which extraction technigue is employed.
Table 12.10 shows solutions for the same data set after extraction with several different
techniques, followed by varimax rotation. Similarities among the solutions are ob-
vious.

None of the extraction techniques routinely provides an interpretable solution
without rotation. All types of extraction may be rotated by any of the procedures
described in Section 12.5.2, except Kaiser's Second Little Jiffy Extraction, which
has its own rotational procedure.

Lastly, when using FA the researcher should hold in abeyance well-learned
proscriptions against data snooping. It is quite common to use PCA as a preliminary
extraction technique, followed by one or more of the other procedures, perhaps varying
number of factors, communality estimates, and rotational methods with each run. |
Analysis terminates when the researcher decides on the preferred solution. *

12.511 PCA vs. FA One of the most important decisions is the choice between
PCA and FA. Mathematically, the difference involves the contents of the positive
diagonal in the correlation matrix (the diagonal that contains the correlation between
a variable and itself). In either PCA or FA, the variance that is analyzed is the sum
of the values in the positive diagonal. In PCA ones are in the diagonal and there 18
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TABLE 12.9 SUMMARY OF EXTRACTION PROCEDURES

Extraction
technique Program Goal of analysis Special features
Principal compo- SPSS* Maximize variance extracted  Mathematically determined
nents BMDP4M by orthogonal components empiricat solution with .
SAS commen, unique, and er-
SYSTAT ror variance mixed into
components
Principal factors SPss* Maximize variance extracted  Estimates communalities to
BMDP4M by orthogonal factors attempt to eliminate unique
JSAS and emror variance from
factors o
Image factoring SPSS§* Uses SMCs between each . -,
BMDP4M variable and all others as. |
(Second communalities to generate
Little Jiffy) a mathematically deter-
SAS mined solution with cmoc .
{Image and variance and unique vari-'
Harris) ance climinated . ..
Maximum likelihood BMDP4M Estimate factor loadings for  Has significasite test for .mn.n.;

factoring SPSS* popuiation that maximize tors; especially useful for -
SAS the Yikelihood of sampling confirmatory factor analy-’
the observed correlation sis A
matrix
Alpha factonng SPSs* Maximize the generalizability ~Somewhat likely to produce
SAS of orthogonal factors communalities larger 3!
than 1 Son
Unweighted least SPSS* Minimize squared residual .
squares SAS correlations
Generalized least SPSs* Weights variables by shared
squares - SAS variance before minimizing

squared residual correla-
tions

as much variance to be analyzed as there are observed variables; each variable .

contributes a unit of variance by contributing a 1 to the positive diagonal of the

correlation matrix. All the variance is distributed to components, including error and .

unique variance for each observed variable. So if all components are retained, PCA
duplicates exactly the observed correlation matrix and the standard scores of the
observed variables. :

In EA, on the other hand, only the variance that each observed variable shares
with other observed variables is available for analysis. Exclusion of error and unigue
variance from FA is based on the belief that such variance only confuses the picture
of underlying processes. Shared variance is estimated by communalities, values
between 0 and 1 that are inserted in the positive diagonal of the correlation matrix.”
The solution in FA concentrates on variables with high communality values. The
sum of the communalities (sum of the SSLs) is the variance that is distributed among

7 Maximum likelihood extraction manipulates off-diagonal elements rather than values in the
diagonal.
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TABLE 12.10 RESULTS OF DIFFERENT EXTRACTION METHODS ON
SAME DATA SET

Factor 1 Factor 2

Variables PCA PFA Rao Alpha PCA PFA Rao Alpha

Unrotated factor loadings

1 .58 .63 .70 .54 .68 .68 —.54 6
2 51 .48 .56 .42 .66 .53 - .47 .60
3 40 38 .48 .29 )| .55 —.50 59
4 .69 .63 55 .69 —.44 —.43 54 -.33
5 .64 54 .48 .59 ~.37 -3 40 —.24
6 72 T .63 74 — .47 -.49 .59 - .40
7 .63 51 .50 53 -.4 -.12 A7 —.07
8 .61 49 41 .50 -.09 - .09 15 -.03

Rotated factor loadings (varimax}

i .15 15 15 .16 .89 9 .87 92
2 A1 Bl 10 12 83 7 72 .13
3 -.02 .01 .02 .00 .81 67 .69 .66
4 .82 16 .78 16 -.02 -.01 -.03 .0
5 T4 .62 .62 .63 01 .M .03 04
6 86 .86 87 B4 .04 —.02 -.01 - .03
7 .61 49 48 .50 .20 18 .21 A7
8 57 .46 45 46 23 .20 .20 19

Note: The largest difference in communality estimates for a single variable between extraction techniques was 0.08.

factors and is less than the total variance in the set of observed variables. Because
unique and error variances are omitted, a linear combination of factors approximates,
but does not duplicate, the observed correlation matrix and scores on observed
variables.

PCA analyzes variance, FA analyzes covariance (communality). The goal of
PCA is to extract maximum variance from a data set with a few orthogonal components.
The goal of FA is to reproduce the correlation matrix with a few orthogonal factors.
PCA is a unique mathematical solution, whereas most forms of FA are not unique.

The choice between PCA and FA depends on your assessment of the fit between
the models, the data set, and the goals of the research. If you are interested in m
theoretical solution uncontaminated by unique and error variability, FA is your choice.
If, on the other hand, you want an empirical summary of the data set, PCA is the
better choice.

12.51.2 Principal Components The goal of PCA is to extract maximum variance
from the data set with each component. The first principal component is the linear
combination of observed variables that maximally separates subjects by maximizing
the variance of their component scores. The second component is formed from residual
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correlations; it is the linear combination of observed variables that extracts maximum
variability uncorrelated with the first component. Subsequent components also extract
maximum variability from residual correlations and are orthogonal to all previously
extracted components.

The principal components are ordered, with the first component extracting the
most variance and the last component the least variance. The solution is Emﬁ_._aanzn»:w
unique and, if all components are retained, exactly reproduces the observed correlation
matrix. Further, since the components are orthogonal, their use in other analyses
(e.g., as DVs in MANOVA) may greatly facilitate interpretation of results,

PCA is the solution of choice for the researcher who is primarily interested in
reducing a large number of variables down to a smaller number of components. PCA
is also recommended as the first step in FA where it reveals a great deal about probable
number and nature of factors. PCA is available through all four computer packages.

12.51.3 Principal Factors Principal factors extraction differs from PCA in that
estimates of communality, instead of ones, are in the positive diagonal of the observed
correlation matrix. These estimates are derived through an iterative procedure, with

SMCs (squared multiple correlations of each variable with all other variables} used -
as the starting values in the iteration. The goal of analysis, like that for PCA, isto-

extract maximum orthogonal variance from the data set with each succeeding factor.
Advantages to principal factors extraction are that it s widely used (and understood)
and that it conforms to the factor analytic model in which common variance is analyzed

ith unique and error variance removed. Because the goal is to maximize variance
extraction, however, principal factors is sometimes not as good as other extraction
techniques in reproducing the correlation matrix. Also, communalities must be es-
timated and the solution is, to some extent, determined by those estimates. Principal
factor analysis is available through SPSS, BMDP, and SAS.

12.51.4 Image Factor Extraction The technique is called image factoring because
the analysis distributes among factors the variance of an observed vanable that is
reflected by the other variables, the SMC. Image factor extraction provides an in-
teresting compromise between PCA and principal factors. Like PCA, image extraction
provides a mathematically unique solution because there are fixed values in the positive
diagonal of R. Like principal factors, the values in the diagonal are communalities
with unique and error variability excluded. The compromise is struck by using the
squared multiple correlation (SMC or R?) of each variable as DV with all others
serving as IVs as the communality for that variable. With a hefty sample size and
more than 10to 15 observed variables, SMCs are stable and, depending on the m&on:mﬁu.
of sampling of variables, provide a decent estimate of communality. .

Image factoring is available through SPSS* FACTOR, BMDP4M (as Kaiser §
Second Little Jiffy), and SAS FACTOR (with two types—‘image’” and Harris com-
ponent analysis).

12.51.5 Maximum Likelihood Factor Extraction The maximum likelihood method
of factor extraction was developed originally by Lawley in the 1940s (see Lawley
and Maxwell, 1963). Maximum likelihood extraction estimates population values for
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factor loadings by calculating loadings that maximize the probability of sampling the
observed correlation matrix from a population. Within constraints imposed by the
correlations among variables, population estimates for factor loadings are calculated
that have the greatest probability of yielding a sample with the observed correlation
matrix. This method of extraction also maximizes the canonical correlations between
the variables and the factors (see Chapter 6).

Maximum likelihood extraction is available through BMDP4M, SFSS* FAC-
TOR, and SAS FACTOR. It is the extraction procedure recommended by BMDP
when the common factor model is appropriate, the number of variables is fewer than
60, and the correlation matrix is not singular.

12.51.6 Unweighted Least Squares (Minres) Factoring The goal of unweighted
Jeast squares {minimum residual) factor extraction is to minimize squared differences
between the observed and reproduced correlation matrices. Only off-diagonal dif-
ferences are considered; communalities are derived from the solution rather than
estimated as part of the solution. This procedure gives the same results as principal
factors if communalities are the same. The procedure was developed by Comrey

(1962) and Harman and Jones (1966) and is available through SPSS* FACTOR and
SAS FACTOR.

12.51.7 Generalized Least Squares Factoring Generalized least squares extrac-
tion also seeks to minimize (off-diagonal) squared differences between observed and
reproduced correlation matrices but in this case weights are applied to the variables.
Differences for variables that have substantial shared variance with other variables
are weighted more heavily than differences for variables that have substantial unique
variance. In other words, differences for variables that are not as strongly related to
other variables in the set are not as important to the solution. This relatively new
method of extraction is available through SPSS* FACTOR and SAS FACTOR.

12.5.1.8 Alpha Factoring Alpha factor extraction, available through SPSS* FAC-
TOR and SAS FACTOR, grew out of psychometric research where the interest is in
discovering which common factors are found consistently when repeated samples of
variables are taken from a population of variables. The problem is the same as
identifying mean differences that are found consistently among samples of subjects
taken from a population of subjects—a question at the heart of most univaniate and
multivariate statistics.

In alpha factoring, however, the concern is with the reliability of the common
factors rather than with the reliability of group differences. Coefficient alpha is a
measure derived in psychometrics for the reliability (also called generalizability) of
a score taken in a variety of situations. In alpha factoring, communalities are estimated,
using iterative procedures, that maximize coefficient alpha for the factors.

Probably the greatest advantage to the procedure is that it focuses the researcher’s
attention squarely on the problem of sampling variables from the domain of variables
of interest. Disadvantages stem from the relative unfamiliarity of most researchers
with the procedure and the reason for it.

b
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12.5.2 Rotation B

The results of factor extraction, unaccompanied by rotation, are likely to be hard to
interpret regardless of which method of extraction is used. After extraction, rotation
is used to improve the interpretability and scientific utility of the solution. It is nop
used to improve the quality of the mathematical fit between the observed and re-
produced correlation matrices because all orthogonally rotated solutions are math-
ematically equivalent to one another and to the solution before rotation. -
Just as the different methods of extraction tend to give similar results with a
good data set, so also the different methods of rotation tend to give similar results
if the pattern of correlations in the data is fairly clear. In other words, a stable solution -
tends to appear regardless of the method of rotation used. . o
A decision is required between orthogonal and oblique rotation. In on&omosm_ .
rotation, the factors are uncorrelated. Orthogonal solutions offer ease of interpreting, -
describing, and reporting results; yet they strain “‘reality’” unless the researcher is
convinced that underlying processes are almost independent. The researcher who .
believes that underlying processes are correlated uses an oblique rotation. In oblique
rotation the factors may be correlated, with conceptual advantages but ?.wna&
disadvantages in interpreting, describing, and reporting results. _..,W.% 3
Among the dozens of rotational techniques that have been proposed, only those
available in the four reviewed packages are included in this discussion (see Table
12.11). The reader who wishes to know more about these or other techniques is
referred to Gorsuch (1983), Harman (1976), or Mulaik {(1972). For the industrious;
a presentation of rotation by hand is in Comrey (1973, pp. 109—145). gt

12.5.21 Orthogonal Rotation Varimax, quartimax, and equamax—three onromm
ona! techniques—are available in all four packages. Varimax is easily the most
commonly used of all the rotations available. L

Just as the extraction procedures have slightly different statistical goals, so also °
the rotational procedures maximize or minimize different statistics. The goal o.m
varimax rotation is to simplify factors by maximizing the variance of the loadings
within factors, across variables. The spread in loadings is maximized—Iloadings that -
are high after extraction become higher and loadings that are low become lower.
Interpreting a factor is easier because it is obvious which variables correlate with it:
Varimax also tends to reapportion variance among factors so that they become relatively -
equal in importance; variance is taken from the first factors extracted and distri
among the later ones. : ﬁ .

Quartimax does for variables what varimax does for factors. It simplifies vari-
ables by increasing the dispersion of the loadings within variables, across factors-
Varimax operates on the columns of the loading matrix, quartimax operates on the
rows. Quartimax is not nearly as popular as varimax because one is usually quﬂ
interested in simple factors than in simple variables. -

Equamax is a hybrid between varimax and quartimax that tries simultaneously
to simplify the factors and the variables. Mulaik (1972) reports that equamax ﬁn.am
to behave erratically unless the researcher can specify the number of factors with
confidence.

"TABLE 12.11  SUMMARY OF ROTATIONAL TECHNIQUES

Rotational

Comments

Goals of analysis

Type

Program
Orthogonal

technigue

Most commonly used rotation; rec-

Minimize complexity of factors

BMDP4M
SAS

Varimax

ommended as default option (in

BMDP, I' [gamma] = 1)

(simplify columns of loading
matrix) by maximizing variance

of loadings on each factor

SP3S§*

SYSTAT

First factor tends to be general with

Minimize complexity of variables

Orthogonal

BMDP4M
SAS

Quartimax

others subclusters of variables

(in BMDP, " = 0)

(simplify rows of loading ma-

trix) by maximizing variance of
loadings on each variable

SPss*

SYSTAT

172)

May behave erratically (I"

Simplify both variables and factors

Orthogonal

BMDP4M
SAS

Equamax

(rows and columns); compro-

mise between quartimax and

varimax

SPS§*

SYSTAT

Gamma (I") continuously variable

Simplify either factors or variables,

BMDP4M Orthogonal

SAS

Orthogonal with

depending on the value of

gamma

gamma ()

Simplify factors by minimizing

Continuous values of gamma, I’

BMDP4M Oblique

SpSs*

Direct oblimin

(BMDP) ot delta, 8 (SP5§%),

cross products of loadings

available; allows wide range of

factor intercorrelations

Permits fairly high correlations

Simplify factors by minimizing

BMDP4M Oblique

SPSS*

(Direct) quartimin

among factors. Recommended
oblique rotation by BMDP se-

ries; inBMDP, T

sum of cross products of squared

loadings in pattern matrix

0. Achieved

=0

in SPSS* by setting &
Accompanies Kaiser's Second Lit-

Rescale factor loadings to yield or-

Both orthogonal

BMDP4M

Orthoblique

tle Jiffy (image) extractien in

BMDP4M
Fast and inexpensive

thogonal solution; nonrescaled

and oblique

SAS (HK}

loadings may be correlated

Orthogonal factors rotated to

Oblique

SAS

Promay,,

oblique positions

Useful in confirmatory FA

Rotate to targe! matrix

Oblique

SAS

Procrustes
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Although varimax rotation simplifies the factors, quartimax the variables, and
equamax both, they do so in BMDP4M and SAS FACTOR by setting levels on
simplicity criterion—I" (gamma)—of 1, 0, and 1/2, respectively. Gamma can also
be continuously varied between O (variables simplified) and 1 (factors simplified) by
using the orthogonal rotation that allows the user to specify I' level.

For many applications, varimax is the rotation of choice; it is the default option .
of all four packages. i

12.5.2.2 Oblique Rotation An embarrasse de richesse awaits the researcher who
uses oblique rotation (see Table 12.11). Oblique rotations offer a continuous range
of correlations between factors. The amount of correlation permitted between factors
is determined by a variable called delta (8) by SPSS* FACTOR and gamma (I') by -
BMDP4M.® The values of delta and gamma determine the maximum amount of -
correlation permitted among factors. When the value is less than zero, solutions are
increasingly orthogonal; at about —4 the solution is orthogonal. When the value is
zero, solutions can be fairly highly correlated. Values near 1 can produce factors
that are very highly correlated. Although there is a relationship between values of
delta or gamma and size of correlation, the maximum correlation at 2 given size o
gamma or delta depends on the data set. oL
It should be stressed that factors do not necessarily correlate when an oblique
rotation is used. Often, in fact, they do not corrclate and the researcher _dvonmn..n
simpler orthogonal rotation. o
The family of procedures used for oblique rotation with varying degrees of -
correlation in SPSS and BMDP is direct oblimin. In the special case where T or 8 -
= 0 (the default option for both SPSS and BMDP), the procedure is called direct
quartimin. Values of gamma or delta greater than zero permit high correlations among
factors, and the researcher should take care that the correct number of factors is
chosen. Otherwise highly correlated factors may be indistinguishable one from the
other. Some trial and error, coupled with inspection of the scatterplots of relationships .
between pairs of factors, may be required to determine the most useful size of gamma
or delta. Or, one might simply trust to the default value. R
Orthoblique rotation is designed to accompany Kaiser's Second Little Jiffy -
(Image) Factor extraction, and does so automatically through BMDP4M. Orthoblique -
rotation uses the quartimax algorithm to produce an orthogonal solution on rescaled -
factor loadings; therefore the solution may be oblique with respect to the original
factor loadings. E
Promax and Procrustes are available through SAS. In promax rotation, af
orthogonally rotated solution (usually varimax} is rotated again to allow correlations
among factors. The orthogonal loadings are raised to powers (usually powers of 2,
4, or 6) to drive small and moderate loadings to zero while larger loadings are reduced,’
but not to zero. Even though factors correlate, simple structure is maximized bY
clarifying which variables do and do not correlate with each factor. Promax has the
additional advantage of being fast and inexpensive.

—— e e

dare s

® In BMDP, gamma is used to indicate the nature of simplicity in orthogonal rotation and the
amount of obliqueness in oblique rotation.

¥
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In Procrustes rotation, a target matrix of loadings (usually zeros and ones) is
specified by the researcher and a transformation matrix is sought to rotate extracted
factors to the target, if possible. If the solution can be rotated to the target, then the
hypothesized factor structure is said to be confirmed. Unfortunately, as Gorsuch (1983)
reports, with Procrustean rotation, factors are often extremely highly correlated and
sometimes a correlation matrix generated by random processes is rotated to a target
with apparent ease.

12.5.2.3 Geometric Interpretation A geometric interpretation of rotation is in Fig-
ure 12.1 where 12.1(a) is the unrotated and 12.1(b) the rotated solution to the example
in Table 12.2. Points are represented in two-dimensional space by listing their co-
ordinates with respect to X and Y axes. With the first two unrotated factors as axes,
unrotated loadings are COST (-~ .400, .900), LIFT (.251, —.947), DEPTH (.932,
.348), and POWDER (.956, .286).

The points for these variables are also located with respect to the first two
rotated factors as axes in Figure 12.1(b). The position of points does not change,
but their coordinates change in the new axis system. COST is now (—0.86, .981),
LIFT (—.071, —.977), DEPTH (.994, .026), and POWDER (.997, — .040). Sta-
tistically, the effect of rotation is to amplify high loadings and reduce low ones.
Spatially, the effect is to rotate the axes so that they **shoot through’” the variable
clusters more closely.

COST e
Factar 2] ® DEPTH
® POWDER
J/ Factor 1
e LIFT

(a) Location of COST, LIFT, DEPTH, and POWDER after extraction {before rotation)

CcosT

Rotated factor 2

|
Rotated factor 1 I
|
_

(b Location of COST, LIFT, DEPTH, and POWDER vis-a-vis rotated axes

Figure 12.1 [llustration of rotation of axes to provide a better definition of factors vis a
vis the variables with which they correlate.
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Factor extraction yields a solution in which observed variables are vectors that
terminate at the points indicated by the coordinate system. The factors serve as axes
for the system. The coordinates of cach point are the entries from the loading matrix
for the variable. If there are three factors, then the space has three axes and three
dimensions, and each observed variable is positioned by three coordinates. The length
of the vector for each variable is the communality of the variable.
If the factors are orthogonal, the factor axes are all at right angles to one another
and the coordinates of the variable points are correlations between the common factors
and the observed variables. Correlations (factor loadings) are read directly from these
graphs by projecting perpendicular lines from each point to each of the factor axes.
One of the primary goals of PCA or FA, and the motivation behind extraction,
is to discover the minimum number of factor axes needed to reliably position variables.’
A second major goal, and the motivation behind rotation, is to discover the meaning
of the factors that underlie responses to observed variables. This goal is met by
interpreting the factor axes that are used to define the space. Factor rotation repositions
factor axes S0 as to make them maximally interpretabie. Repositioning the axes n:w:.mnm
the coordinates of the variable points but not the positions of the points with respect
to each other. -4

factor. In graphic terms this means that the point representing ach variable lies far’
out along one axis but near the origin on the other axes, that is, that coordinates of
the point are large for one axis and near zero for the other axes.

If you have only one observed variable, it is trivial to position the factor axis—

1

The variables forma ‘swarm’’ in which variables that are correlated with one another
form a cluster of points. The goal is to shoot an axis to the swarm of points. With
luck, the swarms are about 90° away from one another so that an orthogonal solution
is indicated. And with lots of luck, the variables cluster in just a few swarms with
empty spaces between them so that the factor axes are nicely defined. .

In oblique rotation the situation is slightly more complicated. Because factors
may correlate with one another, factor axes are not necessarily at right angles. And,
though it is easier to position each axis near a cluster of points, axes may be very
near each other (highly correlated), making the solution harder to interpret. See
Section 12.6.3 for practical suggestions of ways to use graphic techniques to judge
the adequacy of rotation.

12.5.3 Some Practical Recommendations

Although an almost overwhelmingly large number of combinations of extraction and
rotation techniques is available, in practice differences among them are often slight.
With a large number of variables, strong correlations among them, with the same,
well-chosen number of factors, and with similar values for communality, the results
of extraction are similar regardless of which method is used. Further, differences
that are apparent after extraction tend to disappear after rotation.

Factors are usually interpretable when some observed variables load Ems@fﬁ. .
them and the rest do not. And, ideally, each variable loads on one, and only one,’

variable point and axis overlap in a space of one dimension. However, with many.
variables and several factor axes, compromises are required in positioning the axes. .
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Most researchers begin their FA by using principal components extraction and
varimax rotation. From the results, one estimates the factorability of the correlation
matrix (Sections 12.3.2.6 and 12.8.1.6}, the rank of the observed correlation matrix
(Sections 12.3.2.5 and 12.8.1.5), the number of factors {Sections 12.6.2), and
variables that might be excluded from subsequent analyses (Sections 12.3.2.7 and
12.8.1.7).

During the next few runs, researchers experiment with different numbers of
factors, different extraction techniques, and both orthogonal and oblique rotations.
Some number of factors with some combination of extraction and rotation produces
the solution with the greatest scientific utility, consistency, and meaning; this is the
solution that is interpreted.

12.6 SOME IMPORTANT ISSUES

Some of the issues raised in this section can be resolved through several different
methods. Usually different methods lead to the same conclusion; occasionally they
do not. When they do not, results are judged by the interpretability and scientific
utility of the solutions.

12.6.1 Estimates of Communalities

EA differs from PCA in that communality values (numbers between 0 and 1) replace
ones in the positive diagonal of R before factor extraction. Communality values are
used instead of ones to remove the unique and error variance of each observed variable;
only the variance a variable shares with the factors is used in the solution. But
communality values are estimated, and there is some dispute regarding how that
should be done.

The SMC of each variable as DV with the others in the sample as IVs is usually
the starting estimate of communality. As the solution develops, communality estimates
are adjusted by iterative procedures (which can be directed by the researcher) to fit
the reproduced to the observed cotrelation matrix with the smallest number of factors.
Iteration stops when successive communality estimates are very similar.

Final estimates of communality are also SMCs, but now between each variable
as DV and the factors as IVs. Final communality values represent the proportion of
variance in a variable that is predictable from the factors underlying it. Communality
estimates do not change with orthogonal rotation.

Image extraction and maximum likelihood extraction are slightly different. In
image extraction, SMCs of cach variable with all other variables are used as :._ﬂ
communality values throughout. Image extraction produces a mathematically unique
solution because communality values are not changed. In maximum likelihood ex-
traction, number of factors instead of communality values are estimated and off-
diagonal correlations are ‘‘rigged” to produce the best fit between observed and
reproduced matrices.

BMDP, SPSS*, and SAS provide several different starting statistics for com-
munality estimation. BMDP4M offers SMCs, user-specified values, or maximum
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absolute correlation with any other variable as initial communality estimates. SP§g*
FACTOR permits user supplied values for principal factor extraction only, but otherwise
uses SMCs. SAS FACTOR offers, for each variable, a choice of SMC, SMC adjusteq
so that the sum of the communalities is equal to the sum of the maximum absolyte
correlations, maximum absolute correlation with any other variable, user-specified
values, or random numbers between 0 and 1. Fewer iterations are usually required
when starting from SMCs. .
The seriousness with which estimates of communality should be regarded
depends on the number of observed variables. If the number of variables exceeds,
say, 20, sample SMCs probably provide reasonable estimates of communality. Fur- °
thermore, with 20 or more variables, the elements in the positive diagenal are few -
compared with the total number of elements in R, and their sizes do not infiuence -
the solution very much. Actually, if the communality values for all vaniables in FA
are of approximately the same magnitude, results of PCA and FA are very similar. -,
If communality values equal or exceed 1, problems with the solution are in- . .
dicated. There are too few data, or starting communality values are wrong, ot the
number of factors extracted is wrong; addition or deletion of factors may reduce the
communality below 1. Very low communality values, on the other hand, indicate that
the variables with them are outliers (Sections 12.3.2.7 and 12.8.1.7). E

12.6.2 Adequacy of Extraction and Number Y T

of Factors o ._A

Because inclusion of more factors in a solution improves the fit between observed
and reproduced correlation matrices, adequacy of extraction is tied to number.of
factors. The more factors extracted, the better the fit and the greater the percent of
variance in the data **explained’” by the factor solution. However, the more factors -
extracted, the less parsimonious the solution. To account for all the variance (PCA) ..
or covariance (FA) in a data set, one would normally have to have as many factors -
as observed variables. It is clear, then, that a trade-off is required: One wants-toi
retain enough factors for an adequate fit, but not so many that parsimony is lost. ;5.

Selection of the number of factors is probably more critical than selection ofi:
extraction and rotational techniques or communality values. In confirmatory m?n.
selection of the number of factors is really selection of the number of theoretical
processes underlying a research area. You can partially confirm a hypothesized factor: .
structure by asking if the theoretical number of factors adequately fits the data, *5i

There are several ways to assess adequacy of extraction and number of factofs. -
For a highly readable summary of these methods, not all currently available through
the statistical packages, see Gorsuch (1983). Reviewed below are methods available i
through SPSS*, BMDP, SAS, and SYSTAT. SYSTAT provides the first two and SPSS*, -
BMDP, and SAS all the methods described here. b

A first quick estimate of the number of factors is obtained from the sizes of .
the eigenvalues reported as part of an initial run with principal components extraction.
Eigenvalues represent variance. Because the variance that each standardized variable. -
contributes to a principal components extraction is 1, a component with an eigenvalue
less than 1 is not as important, from a variance perspective, as an observed variable. -

[
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The number of components with eigenvalues greater than 1 is usually somewhere
between the number of variables divided by 3 and the number of variables divided
by 5 (e.g., 20 variables should produce between 7 and 4 components with eigenvalues
greater than 1}. If this is a reasonable number of factors for the data, if the number
of variables is 40 or fewer, and if sample size is large, the number of factors indicated
by this criterion is probably about right. In other situations, this criterion may either
over- or underestimate the number of factors in the data set.

A second criterion is the scree test (Cattell, 1966) of eigenvalues plotted against
factors. Factors, in descending order, are arranged along the abscissa with eigenvalue
as the ordinate. The plot is appropriately used with principal components or factor
analysis at initial and later runs to find the number of factors. The scree plot is
available through SPSS™ FACTOR and SAS FACTOR, but it is easy to produce from
the list of factors and eigenvalues available through BMDP and SYSTAT.

Usually the scree plot is negatively decreasing—the eigenvalue is highest for
the first factor and moderate but decreasing for the next few factors before reaching
small values for the last several factors, as illustrated for real data through SPSS™ in
Figure 12.2. What you are looking for is the point where a line drawn through the
points changes direction. In the example, a single straight line can comfortably fit
the first four eigenvalues. After that, another line, with a noticeably different slope,
best fits the remaining eight points. Therefore, there appear to be about four factors
in the data of Figure 12.2.
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Figure 12.2 Screen output for sample data produced by SPSS* FACTOR. Note break in
size of eigenvalues between the fourth and fifth factors.
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Unfortunately, the scree test is not exact; it involves judgment of where the
discontinuity in eigenvalues occurs and researchers are not perfectly reliable judges.
As Gorsuch (1983) reports, results of the scree test are more obvious (and reliable)
when sample size is large, communality values are high, and each factor has several
variables with high loadings. Under less than optimal conditions, the scree test is
still usually accurate to within one or two factors. If you are unsure of the number
of factors, perform several factor analyses, each time specifying a different number
of factors, repeating the scree test, and examining the residual correlation matrix,

The residual correlation matrix is available through SPSS®, BMDF, and SAS.
As discussed in Section 12.4, the residual correlation matrix is obtained by subtracting
the reproduced correlation matrix from the observed correlation matrix. The numbers
in the residual matrix are actually partial correlations between pairs of variables with
effects of factors removed. If the analysis is good, the residuals are small. Several
moderate residuals (say, .05 to .10) or a few large residuals (say >.10) suggest the
presence of another factor.

Once you have determined the number of factors by these criteria, it 1s important
to look at the rotated loading matrix to determine the number of variables that load
on each factor (see Section 12.6.5). If only one variable loads highly on a factor,
the factor is poorly defined. If two variables load on a factor, then whether or not it
is reliable depends on the pattern of correlations of these two variables with each
other and with other variables in R. If the two variables are highly correlated with
each other (say, r > .70) and relatively uncorrelated with other variables, the factor
may be reliable. Interpretation of factors defined by only one or two variables is
cautious, however, under even the most exploratory factor analysis.

For principal components extraction and maximum likelihood extraction in
confirmatory factor analysis there are significance tests for number of factors. Bartlett’s
test evaluates all factors together and each factor separately against the hypothesis
that there are no factors. However, there is some dispute regarding use of these tests.
The interested reader is referred to Gorsuch (1983) or one of the other newer factor
analysis texts for discussion of significance testing in FA.

There is debate about whether it is better to retain too many or too few factors
if the number is ambiguocus. Sometimes a researcher wants to rotate, but not interpret,
marginal factors for statistical purposes (e.g., to kecp all communality values < 1)-
Other times the last few factors represent the most interesting and unexpected findings
in a research area. These are good reasons for retaining factors of marginal reliability.
However, if the researcher is interested in using only demonstrably reliable factors,
the fewest possible factors are retained.

12.6.3 Adequacy of Rotation and Simple Structure

The decision between orthogonal and oblique rotation is made as soon as the number
of reliable factors is apparent. In many factor analytic situations, oblique rotation
seemns more reasonable on the face of it than orthogonal rotation because it seems
more likely that factors are correlated than that they are not, However, reporting the
results of oblique rotation requires reporting the elements of the pattern matrix (A)
and the factor correlation matrix (&), whereas reporting orthogonal rotation requircs
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only the loading matrix (A). Thus simplicity of reporting results favors orthogonal
rotation. Further, if factor scores or factorlike scores {Section 12.6.6} are to be used
as IVs or DVs in other analyses, or if a goal of analysis is comparison of factor
structure in groups (Section 12.6.7), then orthogonal rotation has distinct advantages.

Perhaps the best way to decide between orthogonal and oblique rotation is to
request oblique rotation with the desired number of factors and look at the correlations
among factors. The oblique rotations available by default in SPSS*, BMDP, and SAS
calculate factors that are fairly highly correlated if necessary to fit the data. However,
if factor correlations are not driven by the data, the solution remains nearly orthogonal.

Look at the factor correlation matrix for correlations of .30 and above. If
correlations exceed .30, then there is 10% (or more) overlap in variance among
factors, enough variance to warrant oblique rotation unless there are compelling reasons
for orthogonal rotation. Compelling reasons include a desire to compare structure in
groups, a need for orthogonal factors in other analyses, or a theoretical need for
orthogonal rotation.

Once the decision is made between orthogonal and oblique rotation, the ad-
equacy of rotation is assessed several ways. Perhaps the simplest way is to compare
the pattern of correlations in the correlation matrix with the factors. Are the patterns
represented in the rotated solution? Do highly correlated variables tend to load on
the same factor? If you included marker variables, do they load on the predicted
factors?

Another criterion is simple structure (Thurstone, 1947). If simple structure is
present (and factors are not too highly correlated), several variables correlate highly
with each factor and only one factor correlates highly with each variable. In other
words, the columns of A, which define factors, have several high and many low
values while the rows of A, which define variables vis-2-vis factors, have only one
high value. Rows with more than one high correlation correspond to variables that
are said to be complex because they reflect the influence of more than one factor. It
is usually best to avoid complex variables because they make interpretation of factors
more ambiguous.

Adequacy of rotation is also ascertained through the PLOT commands of SPSS*
FACTOR, SAS FACTOR, and BMDP4M. In the figures, factors are considered two
at a time with a different pair of factors as axes for each plot. Look at the distance,
clustering, and direction of the points representing variables relative to the factor
axes in the figures.

The distance of a variable point from the origin reflects the size of factor
loadings; variables highly correlated with a factor are far out on that factor's axis.
Ideally, each variable point is far out on one axis and near the origin on alt others.
Clustering of variable points reveals how clearly defined a factor is. One likes to Mn
a cluster of several points near the end of each axis and all other points near the
origin. A smattering of points at various distances along the axis indicates a factor
that is not clearly defined, while a cluster of points midway between two axes reflects
the presence of another factor or the need for oblique rotation. The direction of clusters
after orthogonal rotation may also indicate the need for oblique rotation. If clusters
of points fall between factor axes after orthogonal rotation, if the angle between
clusters with the respect to the origin is not 90°, then a better fit to the clusters is
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Figure 12.3 Pairwise plots of factor loadings following orthogonal rotation and 3&33:%.
(a) need for obligue rotation; (b) presence of another factor; (¢) unsuitable data; and (d) simple
structure.

provided by axes that are not orthogonal. Oblique rotation may reveal substantial
correlations among factors. Several of these relationships are depicted in Figure 12.3.

12.6.4 Importance and Internal Consistency of
Factors

The importance of a factor (or a set of factors) is evaluated by the proportion of
variance or covariance associated with the factor after rotation. The proportion of
vartance attributable to individual factors differs before and after rotation becaust
rotation tends to redistribute variance among factors somewhat. Ease of ascertaining
proportions of variance for factors depends on whether rotation was orthogonal of
oblique.

After orthogonal rotation, the importance of individual factors is related to the
sizes of their SSLs (Sum of Squared Loadings from A after rotation). SSLs are
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converted to proportion of variance for a factor by dividing its SSL. by p, the number
of varitables. SSLs are converted to proportion of covariance for a factor by dividing
its SSL by the sum of SSLs or, equivalently, sum of communalities. These com-
putations are illustrated in Table 12.4 and Section 12.5 for the example.

The proportion of variance accounted for by a factor is the amount of variance
in the original variables (where each has contributed one unit of variance) that has
been condensed into the factor. Proportion of variance is the variance of a factor
relative to the variance in the variables. The proportion of covariance accounted for
by a factor indicates the relative importance of the factor to the total covariance
accounted for by all factors. Proportion of covariance is the variance of a factor
relative to the variance in the solution. The variance in the solution is likely to account
for only a fraction of the variance in the original variables.

In oblique rotation, proportions of variance and covariance can be cbtained
from A before rotation by the methods just described, but they are only rough indicators
of the proportions of variance and covariance of factors after rotation. Because factors
are correlated, they share overlapping variability, and assignment of variance to
individual factors is ambiguous. After oblique rotation the size of the SSL associated
with a factor is a rough approximation of its importance—factors with bigger SSLs
are more important—but proportions of variance and covariance cannot be specified.

An estimate of the internal consistency of the solution—the certainty with which
factor axes are fixed in the variable space—is given by the squared multiple correlations
of factor scores predicted from scores on observed variables. In a good solution,
SMCs range between 0 and 1; the Jarger the SMCs, the more stable the factors. A
high SMC (say, .70 or better) means that the observed variables account for substantial
variance in the factor scores. A low SMC means the factors are poorly defined by
the observed variables. If an SMC is negative, too many factors have been retained.
If an SMC is above 1, the entire solution needs to be reevaluated.

BMDP4M prints these SMCs as the positive diagonal of the factor-score co-
variance matrix. SPSS* FACTOR prints them as the diagonal of the covariance matrix
for estimated regression factor scores. In SAS FACTOR, SMCs are printed along
with factor score coefficients by the SCORE option.

12.6.5 Interpretation of Factors

To interpret a factor, one tries to understand the underlying dimension that unifies
the group of variables loading on it. In both orthogonal and oblique rotations, loadings
are obtained from the loading matrix, A, but the meaning of the loadings is different
for the two rotations. ‘

After orthogonal rotation, the values in the loading matrix are correlations
between variables and factors. The researcher decides on a criterion for meaningful
correlation (usually .30 or larger), collects together the variables with loadings in
excess of the criterion, and searches for a concept that unifies them.

After oblique rotation, the process is the same, but the interpretation of the
values in A, the pattern matrix, is no longer straightforward. The loading is not a
correlation but is a measure of the unique relationship between the factor and the
variable. Because factors correlate, the correlations between variables and factors
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(available in the structure matrix, C) are inflated by overlap between factors, A
variable may correlate with one factor through its correlation with another factor
rather than directly. The elements in the pattern matrix have overlapping variance
among factors ‘‘partialled out,”” but at the expense of conceptual simplicity.
Actually, the reason for interpretation of the pattern matrix rather than the
structure matrix is pragmatic—it’s easier. The difference between high and low
loadings is more apparent in the pattern matrix than in the structure matrix.

. As arule of thumb, only variables with loadings of .30 and above are interpreted.

The greater the loading, the more the variable is a pure measure of the factor. Comrey
(1973) suggests that Joadings in excess of .71 (50% overlapping variance) are con-
sidered excellent, .63 (40% overlapping variance) very good, .55 (30% overlapping
variance) good, .45 (20% overlapping variance) fair, and .32 (0% overlapping
variance) poor. Choice of the cutoff for size of loading to be interpreted is a matter
of researcher preference. Sometimes there is a gap in loadings across the factors and,
if the cutoff is in the gap, it is easy to specify which variables load and which do

not. Other times, the cutoff is selected because one can interpret factors with that

cutoff but not with a lower cutoff.

The size of loadings is influenced by the homogeneity of scores in the sample.
If homogeneity is suspected, interpretation of lower loadings is warranted. That is,
if the sample produces similar scores on observed variables, a lower cutoff is used
for interpretation of factors.

At some point, a researcher usually tries to characterize a factor by assigning

it 2 name or a label, a process that involves art as well as science. Rumme! (1970) -

provides numerous helpful hints on interpreting and naming factors. Interpretation
of factors is facilitated by output of the matrix of sorted loadings where variables
are grouped by their correlations with factors. Sorted loadings are produced routinely
by BMDP4M, by REORDER in SAS FACTOR, and SORT in SPSS$* FACTOR.

The replicability, utility, and complexity of factors are also considered in in-
terpretation. Is the solution replicable in time and/or with different groups? Is it trivial
or is it a useful addition to scientific thinking in a research area? Where do the factors
fit in the hierarchy of **explanations™* about a phenomenon? Are they complex enough
to be intriguing without being so complex that they are uninterpretable?

12.6.6 Factor moomm

Among the potentially more useful outcomes of PCA or FA are factor scores. Factor
scores are estimates of the scores subjects would have received on each of the factors
had they been measured directly. \
Because there are normally fewer factors than observed variables, and because
" factor scores are nearly uncorrelated if factors are orthogonal, use of factor scores
in other analyses may be very helpful. Multicollinear matrices can be reduced 0
orthogonal components using PCA, for instance. Or, one could use FA to reduce 3
large number of DVs to a smaller number of factors for use as DVs in Z.>ZO<>.
Alternatively, o:r@ could reduce a large number of Vs to a small number of ?ﬂoﬂ
for purposes of predicting a DV in multiple regression or group membership 11
discriminant analysis. If factors are few in number, stable, and interpretable, thell
use enhances subsequent analyses.
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Procedures for estimating factor scores range between simple-minded (but
frequently adequate) and sophisticated. Comrey (1973) describes several rather simple-
minded techniques for estimating factor scores. Perhaps the simplest is to sum scores
on variables that load highly on each factor. Variables with bigger standard deviations
contribute more heavily to the factor scores produced by this procedure, a problem
that is alleviated if variable scores are standardized first or if the variables have
roughly equal standard deviations to begin with. For many rescarch purposes, this
“‘quick and dirty”” estimate of factor scores is entirely adequate.

There are several sophisticated statistical approaches to estimating factors. All
produce factor scores that are correlated, but not perfectly, with the factors. The
correlations between factors and factor scores are higher when communalities are
higher and when the ratio of variables to factors is higher. But as long as communalities
are estimated, factor scores suffer from indeterminacy because there is an infinite
number of possible factor scores that all have the same mathematical characteristics
and there is no way to decide among them. As long as factor scores are considered
only estimates, however, the researcher is not overly beguiled by them.

The method described in Section 12.4 (especially Equations 12.10 and 12.11)
is the regression approach to estimating factor scores. This approach results in the
highest correlations between factors and factor scores. The distribution of each factor’s
scores has a mean of zero and a standard deviation of 1 (after PCA) or equal to the
SMC between factors and variables (after FA). However, this regression method, like
all others (see Chapter 5), capitalizes on chance relationships among variables so
that factor-score estimates are biased (too close to ‘‘true’” factor scores). Further,
there are often correlations among scores for factors even if factors are orthogonal
and factor scores sometimes correlate with other factors (in addition to the one they
are estimating}.

The regression approach to estimating factor scores is available through SYSTAT
and the other three packages. All four packages write factor scores to files for
use in other analyses and all four print standardized factor score coefficients—rou-
tinely through SYSTAT and BMDP, and through FSCORE in SP5S* and SCORE in
SAS.

SPSS* FACTOR provides two additional methods of estimating factor scores.
In the Bartlett method, factor scores correlate only with their own factors and the
factor scores are unbiased (that is, neither systematically too close nor too far away
from “‘true’’ factor scores). The factor scores correlate with the factors almost as
well as in the regression approach and have the same mean and standard deviation
as in the regression approach. However, factor scores may still be correlated with
each other.

The Anderson-Rubin approach (discussed by Gorsuch, 1983) produces factor
scores that are uncorrelated with each other even if factors are correlated. Factor
scores have mean zero, standard deviation 1. Factor scores correlate with their own
factors almost as well as in the regression approach, but they sometimes also correlate
with other factors (in addition to the one they are estimating) and they are somewhat
biased. If you need uncorrelated scores, the Anderson-Rubin approach is best, oth-
erwise the regression approach is probably best simply because it is best understood
and most widely available.

.

%
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12.6.7 Comparisons among Solutions and Groups

Frequently a researcher is interested in deciding whether or not two groups that diffay -
in experience or characteristics have the same factors. Comparisons among factgr
solutions involve the pattern of the correlations between variables and factors, of
both the pattern and magnitude of the correlations between them. Rummel (1970),
Levine (1977), and Gorsuch (1983) have excellent summaries of several comparisons . ,
that might be of interest. Only the easier comparison techniques are mentioned here,
It is important to note that theory can be tested in FA using these procedures;
Theory regarding factor structure is used to generate one set of loadings that is -
compared with loadings derived from a sample. Estimation of the magnitude of factor -
loadings for variables from theory does not have to be very precise: ones can be E& :
as loadings for vasiables that are expected to load on a factor, while Zeros nﬁdw&.
as loadings for the other variables. Comparisons between the partern of noaa___mm »,SB
theory and loadings from sample data are then conducted in confirmatory FA. "™ .-
The first step in comparing factors from two different samples is to ma:ﬂ.nﬁ B
them. When comparison is the goal, similar procedures are employed at the various | .
stages of analysis with the two data sets. Similar variables and, if possible, mEEE. L
marker variables are measured during data collection. Similar procedures for Ea&Em Y
missing data and outliers are employed. The same considerations are used to _Ho&_oo %
transformations of variables, if desired. Extractional and rotational 60::5;8 Bn
the same, as is the criterion for determining number of factors. If factor scores Eo
to be compared, they are generated by the same procedures. :&:.
. Once data sets are factor analyzed, one decides which pairs of factors to 88?3 U
Comparing all possible pairs of factors can result in spuriously significant results _uw
o»EEREm on chance relationships. Presence of marker variables wE.ﬁ__ma owgwnm

womoan going on, careful inspection of the loading matrices for both m—d:ﬁ
may reveal similarities or differences in factor structure sufficiently clear as to obviate
the need for more formal procedures. Did both groups generate the same number &.
factors? Do almost the same variables load highly on the different factors for the two -
groups? Could you reasonably use the same labels to name factors for both groups?
If all three questions are answered in the affirmative, it is unnecessary to E.oooon_ )
to statistical comparisons, e
If formal procedures are needed, an important decision ts whether to SBmE.o
just the pattern of loadings or both the pattern and magnitude of loadings in the data
sets. Comparisons involving both pattern and magnitude are more stringent than those .
involving just patiern. Magnitude of loadings is influenced by extraneous features of
data collection such as homogeneity of a sample for factors being compared, 50
magnitude is considered when the researcher believes that these influences are absent.
Cattell’s salient similarly index, s (Cattell and Baggaley, 1960; Cattell, _oud.
is used to compare patterns of loadings. The Pearson product-moment oo:.&m:oa
coefficient, r, is used to compare both pattern and magnitude of loadings. .
To illustrate these two methods, the two loading matrices in Table 12.12 E.o‘
used. Both are products of overactive imagination but do illustrate a typical problem
in factor comparison, namely, that factor 1 in Set 1 is similar to factor 2 (rather than

A
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TABLE 12.12 LOADING MATRICES FROM TWO HYPOTHETICAL

DATA SETS

Set 1 Set 2

Factor 1 Factor 2 Factor 1 Factor 2
COST —.086 981 732 265
LIFT -.072 - 978 649 537
DEPTH 994 027 211 874
POWDER 997 - .040 .18% 796

to factor 1) in Set 2. Sometimes it is hard to decide which factors to compare. But
if the decision is that difficult, perhaps you have your answer.

In calculating s, the first step is to construct a two-way frequency table, like
that in Table 12.13, with pairs of loadings for each variable on each factor contributing
a single tally to the table according to whether the loadings are positively salient
(PS), negatively salient (NS), or neither (hyperplane or HP} on the two factors being
compared. Cattell used a cut of .10 for determining salience; loadings at or above
.10 were salient while lower ones were not. But a cut of .32 or higher is better for
this example and is employed here.

For the COST variable, the loading of — 086 in Set 1 is in the hyperplane as

TABLE 12.13 CALCULATION OF CATTELL'S SALIENT
SIMILARITY INDEX s

Set 1
PS HP NS
PS o 12 i
Set 2 HP n n [ ]
NS Cy €n n
For the example:
Set 1
PSS HP NS
PS 2 1
Set 2 HP 1 N
NS
2+0-0-0

S= 0704040+ 51+0+0+0)
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is the loading of .265 in Set 2. Therefore, a tally is placed in the ¢, cell of the table.

TABLE 12.14 COMPARISON OF FACTOR ANALYSIS PROGRAMS

For the LIFT variable, —.072 is HP while .537 is PS5, resulting in a tally in ce}]

SPSS* SAS SYSTAT
¢,,. For DEPTH, .994 and .874 are both PS as, for POWDER, are both .997 an Feature FACTOR BMDP4M FACTOR FACTOR
.796. These give the two tallies in cell ¢y;. . -

Once the frequency table is constructed, s is calculated as follows: Comelation matrix Yes Yes Yes Yes
- About origin No Yes Yes No
§ = cut ¢n— a7 :M.—.mv., Covariance m:.mix No Yes Yes Yes
ey + et ezt eyt St ot et o) D About origin No Yes Yes No
P Factor loadings (unrotated pattern) Yes Yes Yes No
The ¢ values in the equation are replaced by frequency counts from cells in the Factor-score coefficients No Yes Yes No
frequency table. Application of the equation for comparison of factor 1 in Set 1 and .. muMMo_quHnm“.mwsn pattern) and Yes o Yer o
factor 2 n Set 2 results I an § value of .80. . N Specify maximum number of factors Yes Yes Yes Yes
Estimates of probability values for s are provided by Cattell and colleagues . Extraction method (sce Table 12.9)
(1969) and reproduced in Appendix C, Table C.7. Probabilities are assessed con: * PCA Yes Yes Yes Yes
sidering both the number of variables, p, and the percentage of cases that fall into . -~ PFA Yes Yes Yes No
the hyperplane for the pair of factors being compared: 60%, 70%, 80%, or 90%. I .. Image (Little Jiffy, Haris) Yes Yes Yes* No
a value of s exceeds that of v, for some hyperplane percentage and number of variables; . - ZNHVEE likelihood (Rac’s canon- Yes Yes Yes No
then the factors are reliably similar. For instance, if the hyperplane count is 60% and . - Alpha Yes No Yes No
40 variables are compared, an s value in excess of .26 indicates similarity of factors ;- Unweighted least squares Yes* No Yes No
at the .041 significance level. (Significance for the example cannot be determined -, Generalized least squares Yes® No Yes No
because only 25% of the loadings are in the hyperplane and only four variables ar¢ Specify communalities Yes Yes Yes N.A.
included.) . L wvonﬂw ===_=“..B o_woh_uh_cn b Yes Yes Yes Yes
The pattern and magnitude of loadings are compared for two factors and two * vH co Sﬁﬂohg oF variance No No Yes No
groups by computing Pearson’s r (see Equation 3.29). The loadings for factor 1 _w.. - Specify maximur number of terations Yes Yes Yes NA.
Set 1 and factor 2 in Set 2 from Table 12.12 correlate .91. Although calculating 7 Option to allow communalities > 1 No No Yes N.A.
for loadings is a straightforward procedure and the meaning of r is widely understood,” - Specify tolerance o No Yes Yes No
this method of comparing factors has drawbacks. If there are numerous variables, it wﬂww:nﬂoﬁ%ommnnﬂnﬂa__n i Yes Yes Yes N.A.
is possible for r to be large even though no variables with large loadings are the Varimax ) Yes Yes Yes Yes
game for the two factors. The correlation is large because of the numerous variables - Quartimax Yes Yes Yes Yes
with small loadings that are not loaded on either factor. Thus, caution is urged in Equamax Yes Yes Yes Yes
interpretation of r used to compare factors. R Direct oblimin Yes Yes No No
Another method, experimental at this stage, involves generating pairs of factor .. Was_ona,%”ﬂ___ﬁ_m N N «M um HM
scores for a group by using the factor-score coefficients for that group and then Orthablique No Yes HE No
generating factor scores by using factor-score coefficients for the other group. .58 - Promax No No Yes No
pairs of factor scores are correlated. If correlation is high, it implies that there 18 Procrustes No No Yes No
good correspondence between factor scores generated by the two different groups - Prerotation criteria No No Yes No
and that factor structure is therefore similar. o O_z_o:m_ _Amawoq..m normalization Yes® Yes Yes Normazlized only
¥ Optional weighting by Cureton- No No Yes No
) Mulaik technique
tional rescaling of pattern matrix to
12.7 COMPARISON OF PROGRAMS | Optiona] rescaling of pa o Mo ves Ko
i imi imi limit
BMDP, SPSS™, and SAS each have a single program to handle both FA Ea. PCA. Wwﬂmmumﬂ»__ﬂ M”,mwn”nﬂ_.ﬂﬂmoa Zosts ﬂH_,«. znr_wa.. ZMc
All three programs have numerous options for extraction and rotation and give the Differential variable weighting No No Yes No
user considerable latitude in directing the progress of the analysis. The unomn.:nm Output
are all flexible and rich in information. The SYSTAT FACTOR 3.0 program is limited Means and standard deviations Yes Yes Yes No
1o PCA and orthogonal rotation. Features of all four programs are described in Table Number of cases per variable
{missing data) Yes No No No
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