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Digital filtering in EEG/ERP analysis: Some
technical and empirical comparisons
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and
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A general approach to time domain digital filtering is described, and examples of some filters used
in EEG/ERP research are presented. Simulations are reported that evaluate the impact of the relative
length of the filter weight series and the signal cycle to be filtered, the span and real-time density of the
filter weights, and slow drift across the epoch being filtered. Results indicate that some filters com-
monly used inthe EEG/ERP literature are inadequate. Frequency domain digital filtering is also briefly
discussed. The fast Hartley transform, a fast but relatively unknown computational method for fre-
quency domain filtering of ERP/EEG data, is \ntroduced and compared with time domain filtering. .
Some practical recomumendations are provided.

The analysis of encephalographic (EEG) data, either fall in synchrony. The sum of the cross-products will be
ongoing activity or event-related potentials (ERPs), gen- most negative when the data have the same frequency but
erally requires the extraction of a signal of interest from are inverted (180° out of phase). Any other pattern in the
a noisy background. This filtering process may be carried  data will produce a sum closer to zero, In effect. the filter
out in a variety of different ways. The term digital filter s “uned” to detect a sinusoidal signal of a certain fre-
refers to a wide range of techniques that have in commeon  quency, and signals that are nonsinusoidal or do not match
the fact that they are mathematical procedures applied to the filter’s frequency will not produce as much output.
discrete, numeric representations of continuous wave- Digital filters of this type are pervasive in psychophys-
forms to emphasize or attenuate certain frequencies. iology. In designing an appropriate filter fora given EEG/

Digitally filtering an EEG waveform in the time do- ERP application, the investigator faces a choice amonga i
main' typicaily involves cross-multiplying each unfiltered  variety of methods for generating the weights used in the
data point and its neighbors with a set of weights. In effect, cross-multiplication function and also a choice of the set -«
the weights represent a copy of the signal pattern ofinter- of adjacent time points to which to apply the weights.
est. The cross-multiplication process is repeated for each These choices affect the computational speed of the fil-
point to be filtered. The sums of these cross-products, ter, how much of the desired signal is preserved, and what
arranged as a series, constitute the filtered waveform. An kind of noise is attenuated. In aggregate, these choices
intuitive appreciation of how such a procedure can accom- involve a variety of subtle factors and tradeoffs. Unfor-
plish frequency-specific filtering can be gained by con- tunately, it appears that digital filters are more widely
sidering a set of weights with magnitudes forming a sine used than understood, with the result that inferior and
wave of a particular frequency. When data points are  often inappropriate filters are used.
cross-multiplied with these weights, the sum of the cross- To facilitate appropriate use of digital filtering in the
products will be largest when the data predominantly con- EEG/ERP literature, this paper will provide a general ap-
sist of a sine wave of the same frequency and are in phase?  proach to conceptualizing time domain filter methods,
with the weights, such that the two sets of values rise and  followed by some empirical investigations of the limits

of such methods. The presentation will emphasize ac-
- cessibility rather than completeness (see Cook & Miller,
Portions of the introductory material in this paper are basedona  1992: Ruchkin, 1988; and especially Glaser & Ruchkin,

more general tutorial on filtering (Cook & Miller, 1992). J.B.N. was : : : : -
supponted in part by NIMH Grant T32 MH14257 to Lawrence Joncs, 1976, for more technical discussions). Time domain fil-

and this project was supported by NIMH Grant R01 MH39628 to ten_ng will .be dlstmgulshed from ffeq“ency d(?mam fil- i
G & M. and by the Departments of Psychology and Psychiatry and the tering. Basic concepts of frequency analysis will be pre-
Beckman Institute of the University of lilinois. We gratefully acknowl-  sented, and a relatively new computational approach to
edge the contributions of Richard Davidson, Blair Hicks, Brandy  frequency domain filtering that is largely unknown in the
[saacks, James Long, Bruce ‘Wheeler, and especially Joseph Senulis, EEG/ERP literatu: will be introduced. Fi 1 :
Correspondence concerning this article should be addressed to G. A. . lterature Wi m ucec. * inally, some com- b
Miller, Departrment of Psychology, University of illinois, 603 E. Daniel parisons and recommendations involving these methods
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DIGITAL FILTERING
IN THE TIME DOMAIN

Concepts and Terminology

We will introduce a formal representation of a com-
mon filtering method and then discuss some examples.
EEG voltage varies continuously over time and may be
digitized at equal intervals, yielding a fime series of n
observations of the form

Xn X!+p’ Xl+2p’ X!*Jp’ sy Xr+(n—1}p'

The subscripts refer to the time at which the associated
data point X is observed, such that ¢ is the time at which
recording began and p is the sampling period (the time
between adjacent samples). Such a representation of the
data is said to be “in the time domain.” The present focus
is on a very common type of digital filter, in which each
filtered point is computed by using the corresponding
unfiltered point and an equal number of unfiltered points
before and after the point to be filtered. Specifically,
each output value is computed as the sum of the cross-
products of the weights and a symmetrical set of adja-
cent input data points, as follows:
J
},J = Z H{f * X!+l"
==

where W is the series of 27+ 1 weights (subscripted —j to
+4), Xis the input time series, Y is the filtered time se-
ries, and the subscript ¢ refers to each time point in the
input series.

This cross-multiplication and summing procedure,
when carried out across a range of values of ¢, is referred
to as convolution. The 2j+ 1 weights are symmetric (i.e.,
W, = W_,) about an unpaired center weight, #;. Such
filters have a finite impulse response (FIR), a term re-
ferring to a filter's response to a perturbation in an oth-
erwise consistent input function. Filters that define out-
put points solely on the basis of input points are said to
have a finite impulse response, because the arithmetic
effect of a single aberrant input point (an “impulse™) is
confined to the 2j points adjacent to it. As a result, the
perturbation disappears after a finite amount of time
(afier the last filtered point that includes the aberrant un-
filtered point in its computation—the jth point}. In con-
trast, filters that define each filtered point in part on the
basis of prior filtered points have an infinite impulse re-
sponse (1IR), because the arithmetic effect of a single
aberrant point will continue to some degree into all sub-
sequent points. These two kinds of filters are also some-
times referred to as “nonrecursive” and “recursive,” re-
spectively (see Cook & Miller, 1992, for discussion of
FIR and IIR filters).

A variety of FIR filters have been described in the
EEG/ERP literature, with the most common use being to
smooth a time series (i.e., remove high-frequency com-
ponents). Smoothing is most often accomplished by av-
eraging a symmetric set of points before and after each
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point being filtered. In an average of N points, each point
is weighted by 1/N. Because the N points generally cover
only a small portion of the total time series, fast but not
slow changes are removed by the filter, which thus
serves a smoothing function. This filter is variously re-
ferred to as a moving-average filter, reflecting the fact
that computation of the average is repeated to define
each filtered point; as an egual-weight filter, reflecting
the fact that the weights are identical; or as a boxcar fil-
ter, reflecting the shape of a plot of the weights. Boxcar
filters vary only in the number of data points averaged
together, since that dictates the value of the weights
(1/N).

The gain function of a filter describes its gain (ratio of
output to input) as a function of frequency. Thus, the
gain functions illustrated in Figure I show the propor-
tion of the input signal at 2 given frequency that is avail-
able in the output of the filter. A gain of 0.0 implies com-
plete attenuation at a given frequency, whereas a gain of
1.0 implies no attenuation. In some circumstances, gain
can exceed 1.0 (in effect, the filter functions as an am-
plifier at that frequency) or fall below 0.0 (an inverter).
Gain functions for useful digital filters typically share
several features: The pass band is the frequency range
where the gain function is close to 1.0, the stop band is
the frequency range where the gain function is close to
0.0, and the transition band is the frequency range where
the gain is intermediate. The x-axis of a gain function for
a digital filter ranges from 0 Hz (dc) to one half the sam-
pling frequency (i.e., f;/2, called the Nyquist frequency).

For a boxcar fiiter, the gain function is solely a func-
tiont of the number of weights and the sample frequency.
Gain functions for some boxcar filters illustrated in Fig-
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Figure 1. Amplitude gain functions for boxcar filters. f, is the
sampling frequency. The different line types illustrate filters dif-
fering in number of weights. The highest possible value for £, and
hence for the y-axis is the Nyquist frequency, which is half the
sampling frequency. Note the considerabie undershoot (negative
gain) and ringing in the stop band.
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ure 1 indicate several limitations of such filters. Unless
a considerable number of weights is used (more than is
typical in the ERP literature; see Farwell, Martineric, Bash-
ore, Rapp, & Goddard, 1993), the gain function shows
very poor frequency precision. This is apparent in the
breadth of the transition band and the ripple in the stop
band. In fact, the signal can be inverted (gain < 0.0) by
as much as 33% for a 3-weight filter and still as much as
22% even for a 15-weight filter. The half-amplitude cut-
off frequency, f,, for a boxcar filter of length 2j+ 1 weights,
applied to data digitized at a sampling frequency of f;, is
approximately .61 # £,/j. This implies that j and f; cannot
be specified independently. Furthermore, because j must
be an integer, available cutoff frequencies are quite lim-
ited for a given f,.

Advantages of boxcar filters include intuitive sim-
plicity and speed of computation. The speed considera-
tion may be particularly important if the filter is to be
implemented on line. These advantages must be weighed
against the boxcar filter’s limited range of parametric
control (e.g., available cutoff frequencies), its very poor
frequency precision, and its potential for introducing ap-
parent phase shifts. Cook and Milter (1992), Farwell et al.
(1993), Ruchkin (1988}, and Ruchkin and Glaser (1978)
have provided further discussion of boxcar filters. Far-
well et al. make a particularly convincing case against the
use of boxcar filiers in ERP research.

In recent years, FIR digital filters have increasingly
used sets of unequal weights. In exchange for the greater
computational demands of these more complex FIR fil-
ters, they generally provide far superior frequency pre-
cision and greater control over other filter characteris-
tics. Frequency precision is limited only by the number
of weights (and thus time points) employed. Multiple
pass or stop bands can be specified, which may be of use
if several sources of narrow-band activity are of interest
(e.g., different EEG frequency bands) or are to be removed
as noise.

Any filtered time series can be subtracted from the
original time series, yiclding a second filtered time se-
ries. This implements the complement of the original fil-
ter. For example, a filter that passes frequencies only
very close to 50 or 60 Hz can be used to remove 50 or
60 Hz via subtraction. This procedure can be applied
with any low-pass filter (including a boxcar filter) in
order to effectively convert it to a high-pass filter, and
vice versa.

Given this broad view of FIR filters (see also Coles,
Gratton, Kramer, & Miller, 1986; Cook & Miller, 1992;
Donchin & Heflley, 1978), it becomes clear how perva-
sive they are in the EEG/ERP literature. Computation of
the mean of a time series may be construed as the appli-
cation of a boxcar filter, attenuating all frequencies ex-
cept 0 Hz (dc). One can also conceptualize an area mea-
sure in the scoring of an ERP component as a boxcar
filter, in which the number of weights is equal to the
number of data points in the scoring window. Computa-
tion of the variance of a time series removes the dc com-

ponent while retaining (and combining) all other (ac)
frequencies. This follows from the fact that computation
of the variance involves the subtraction of the mean. Sim-
ilarly, the computation of the root mean square {RMS)
value of an ac signal is equivalent to the standard devia-
tion of the time series, since the mean (not explicitly sub-
tracted in the RMS procedure) of an ac signal, in gen-
eral, is 0. The most common scoring method in the ERP
literature is the detection of a maximum or minimum
value in a time window. This peak-picking can be un-
derstood as the application of a filter with weights (...,
0,0,0,1,0,0,0,...). This filter is applied repeatedly, at
each sample point within the scoring window, and the
sample producing the largest convolution is selected as
the score. As a high-frequency noise-reduction strategy,
occasionally one chooses to remove an errant point and
replace it with the average of its immediate neighbors.
Such a procedure can be considered the application of a
filter consisting of the weights (.5, 0, .5) applied around
the errant point (although Glaser & Ruchkin [1976]
warn against the unusual gain function of such a filter).
Even the ubiquitous prestimulus baseline computation
is, in effect, a boxcar filter.

Particularly interesting are FIR filtering methods used
in ERP temptate-matching algorithms. The template can
be seen as a set of weights that reflects a specific hy-
pothesis about the shape of the signal being sought. For
example, if the template (the set of weights) is simply the
positive half cycle of a 2-Hz sine wave, then cross-
multiplication of that template with raw EEG will con-
stitute a means of filtering for the P300 component of
the ERP on a single-trial basis (see, e.g., Ford, White,
Lim, & Pfefferbaum, 1994). One might search EOG or
EEG data for a blink by establishing a filter template
whose weights approximate the shape of a blink (e.g.,
Gratton, Coles, & Donchin, 1983; Miller, Gratton, & Yee,
1988). The Woody (1967) filter technique used for la-
tency correction of ERPs uses as its template a portion
of the precorrection waveform for a given subject (L.e..
the template weight function is customized for each sub-
ject). In all of these examples, one slides the template
along the time series of data, cross-multiplies and sums,
and notes the latency of maximum value as the likely la-
tency of the signal for which one is filtering.

A somewhat different use of the weight series in time
domain frequency filtering is seen in the autocorrelation
function. In autocorrelation, a time series of N points is
systematically correlated with a copy of the N points at
various sample-point lags. At zero lag, the correlation is
1.0. The lag is systematically increased, with the corre-

lation computed at each lag for up to N—2 lags. The re- -

sulting set of correlations can be plotted as a function of
lag, as is shown in Figure 2.

The autocorrelation function filters by highlighting
temporally recurrent information and deemphasizing
other information in a time series. In the case of a pure
sine wave signal (top panel of Figure 2), the autocorre-
jation function duplicates the original sine wave per-
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Figure 2. Examples of the autocorrelation function. The x-axis
represents real time for the signal (thin lines) and real-time lag for
the corresponding autocorrelation function (thick lines). The y-
axis is in arbitrary units for the signal and correlation value for
the autocorrelation function. Top panel: The signalisa noiseless,
pure sine wave. The antocorrelation reproduces the original
waveform exactly. There is an apparent difference between the
signal and the autocorrelation only because the signal starts at
zero amplitude, At zero lag the autocorrelation is +1.0. With
growing nonzero lags, the correlation drops until a lag of 1807,
when the correlation is — 1.0. At a lag equal to one full cycle, the
correlation is again +1.0. If the signal were a noiseless, pure co-
sine wave, there would be no lag between the raw data and the
autocorrelation function, because both functions would start at
+1.0. Middle panel: The signal is the same pure sine wave plus
random noise. The autocorrelation function nevertheless again
reproduces the dominant frequency and its phase quite well, al-
though the maximum correlation is attenuated because of the
noise added 1o the sine wave. Bottom panel: The signal is the
same pure sine wave plus a second pure sine wave signal at twice
the frequency of the first. Note the double peaks in the autocor-
relation function, revealing the periods of the two signals. The
range of correlation values is again attenuated relative to the first
case, however. The maxima and minima will vary with the rela-
tive amplitude of, and the phase relationship between, the two
sine waves, although the double peaks will always be apparent. In
this example, the two signals began in phase, so they are in phase
whenever the slower sine wave begins a new cycle. Thus, the auto-
correlation reaches + 1.0 at those times and never reaches — 1.0,
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fectly. When the signal-to-noise ratio is moderate, the
autocorrelation function is fairly robust to random noise
(middle panel). Finally, the autocorrelation can reveal
multiple signal frequencies (bottom panel), although this
is less useful as the number of frequencies increases. A
cross-correlation function is generated similarly, except
that distinct sets of points X and ¥ (e.g., from two chan-
nels) are correlated at various lags. This approach could
be especially useful, for example, in determining latency
differences between ERP component peaks at homolo-
gous sites over different hemispheres. Autocorrelation
and cross-correlation procedures require no a priori
mode! of a desired signal. They simply reveal whatever
substantial periodic signals may be present.

Autocorrelation and cross-correlation procedures il-
lustrate the breadth of means by which the investigator
can obtain the set of weights for a digital filter. Although
they obtain their weights rather differently from the other
examples presented here, all of these methods have in
common a simple summing-of-cross-products computa-
tion involving two time series. The general point is that
such digital filters are pervasive in the EEG/ERP litera-
ture. Here are four examples that illustrate such filters
used with EEG and ERP data.

In a standard ERP study, one often wants to identify
components that are roughly half sinusoids and guantify
their peak amplitude and the latency of that peak. The
phase distortion that a conventional analog filter intro-
duces might affect the latency measurement. Setting the
analog low-pass filter too high is problematic, because
searching for the maximal value in a latency window
would then risk capitalizing on small, chance fluctua-
tions (noise) in the channel. Hence, it is useful to smooth
the data digitally before scoring. One must estimate the
frequency characteristics of the component(s) of interest
and select a filter that has either a narrow transition band
or a cutoff frequency well above those frequencies. Giese-
Davis, Miller, and Knight (1993) expected the main ERP
components of interest to be below 3 Hz and wished to
remove alpha-band information (around 10 Hz) prior to
scoring. A low-pass filter with a half-amplitude cutoff
of 5 Hz would require a moderately narrow transition
band, in order to pass 0 Hz and still remove alpha. A non-
boxcar 31-weight filter proved adequate for data digi-
tized at 125 Hz, with amplitude gains of 96% at 0 Hz,
87% at 2 Hz, and just 2% at 10 Hz.

In contrast, in looking at alpha activity in baseline EEG
digitized at 125 Hz, Etienne, Deldin, Giese-Davis, and
Miller (1990) found that a non-boxcar 31-weight filter
constructed to pass just 8—13 Hz (half-amplitude cutoffs)
was much less effective. The filter passed only 61% of
the desired activity at 10 Hz, yet it passed 25% of the un-
desired activity at 6 and 16 Hz. The large attenuation at
10 Hz and the considerable leakage outside the desired
pass band were essentially due to 10 Hz being relatively
close to both of the cutoff frequencies. Very narrow tran-
sition bands, requiring many weights, are necessary in
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such a case. These first two examples are not as similar
as they may seem. Although both involved 125-Hz sam-
pling and 31-weight filters that could be described as
having a pass band that is 5 Hz wide, the 8-13 Hz band-
pass filter is much more exacting, because half of the 8-
Hz amplitude must be removed. In contrast, for the 0-5
Hz low-pass filter, alt of the 0-Hz activity is to be passed.
For more success in separating 8—13 Hz activity in EEG
digitized at 250 Hz, Heller, Nitschke, Etienne, and Miller
(1997) employed a non-boxcar 501-weight filter that
provided a virtually perfect gain function.

A quite different case is the measurement of very slow
phenomena. To quantify the contingent negative varia-
tion (CNV), Yee and Miller (1988) employed, in effect,
a boxcar filter to remove conventional (faster) EEG ac-
tivity, averaging together the last 250 msec of EEG to
score the CNV. Such a case in which signal and noise
have very different frequencies permits a wide transition
band, and one can benefit from the computational speed
of a boxcar filter.

Practical Considerations in Time Domain
Digital Filtering

The foregoing discussion has provided some defini-
tions and some computational and intuitive perspectives
on basic time domain digital filters (see also Cook &
Miller, 1992, and Donchin & Heffley, 1978). Also worth
consideration are some practical issues. For this paper,
we undertook some empirical comparisons in order to
address three issues: the signal cycle length to be fil-
tered, the span and real-time density of the weights, and
the impact of a linear trend (slow drift). For all of these
comparisons, we digitally generated data with specified
frequency and amplitude characteristics and then sub-
jected them to digital filters varying along various di-
mensions of interest. The accuracy of the filter was judged
on the basis of its ability to return a waveform with the
same RMS amplitude as that of the original waveform.

Relationship of filter length to signal cycle length.
Working with time domain digital filters in a variety of
electrogastrogram, electrodermal, EEG, and ERP appli-
cations, we came to wonder whether the length of the fil-
ter (in number of weights or in real time) relative to the
length of a given sine wave cycle could be a factor in the
accuracy of the filter. There is some appeal to the notion
that a filter might perform better to the degree that it
spans a larger portion of a given sine wave cycle, or a
larger number of cycles. Alternatively, it may be the span
of real time that the filter covers, rather than the number
of cycles, that matters. A third possibility is that neither
the span of real time nor the number of cycles matters.

We explored this empirically by creating two simu-
lated 60-sec samples of a 50-uV peak-to-peak (17.678 4V
RMS) pure sine wave, one at 5 Hz and one at 10 Hz. We
then sampled the continuous sine wave functions at ei-
ther 125 Hz or 250 Hz. We constructed a number of fil-
ters, each with a half-amplitude bandpass of 4—6.5 Hz
(applied to the 5-Hz signal) or 8-13 Hz (applied to the

10-Hz signal). The 10-Hz simulation was selected be-
cause of the importance of alpha band (8--13 Hz) activ-
ity in much EEG research and because of the threat that
alpha band activity poses in much ERP work. The 5-Hz
simulation allowed an unconfounding of simulated sig-
nal frequency and sample frequency. Thus, for example,
a 5-Hz signal sampled at 125 Hz provides the same num-
ber of samples per sine wave cycle as does a 10-Hz sig-
nal sampled at 250 Hz.

Table 1 contains the RMS values obtained for 32 simu-
lated cases in which the weights spanned varying amounts
of real time and thus varying numbers of signal cycles,
from less than a tenth of a second to over 8 sec and from
less than half a cycle to over 80 cycles. Not surprisingly,
as the number of weights increased, the filter improved.
Examining each colurn in the table, the RMS values rise
monotonically until they are within 1% of the 17.678-uV
ideal. Importantly, in all four columns, RMS values do not
reach asymptote untit about 7 cycles were spanned. In
contrast, the real-time span of the filter shows no consis-
tent relationship to the number of weights at which as-
ymptote was reached.

Certain regularities in Table 1 confirm the validity of
the simulation. For a given row (i.e., a given number of
weights), the first and last cases (columns) produced
identical RMS values (within rounding error). For ex-
ample, with 21 weights, a 5-Hz signal sampled at 125 Hz
and a 10-Hz signal sampled at 250 Hz both produced
4.321 uV. In both cases, sampling provided 25 samples
per cycle, and the 21-weight filter spanned .84 cycle.

Table 1 raises significant questions about some kinds
of filters in widespread use. The relatively low number
of weights often employed in time domain digital fihers
in the EEG/ERP literature (e.g., the 7-weight boxcar fil-
ters historically common in P300 studies or the 9-to 15-
weight boxcar filters evaluated by Farwell et al., 1993)

Table 1
Effect of Filter Weight Cycle Span

Simulated Signal Frequency (Hz}

5 10
Sample frequency (Hz) 125 250 125 250
Samples per signal cycle 25 30 12.5 25
No. Weights
21 4321 . 3079 7.865 4.321
31 6.052 3.587  10.861 6.051
51 9.390 4.721 14,933 9.390
125 16.335 10532  17.743 16335
175 17.485 13.404 17.662 17.485
251 17.741 16048 17.635 17.741
501 17.636 17752 17.648 17636
1,023 17610 17611 17671 176129

Note—Tabte entries are postfiltering RMS signat voltage in 4V for an 35
input signal consisting of 60 sec of a 5- or 10-Hz pure sine wave with

a peak-to-peak amplitude of 50 pV. The 5-Hz data were submitted to
time domain 4-6.5 Hz bandpass filters with specified numbers of
weights. The 10-Hz data were submitted to time domain 8-13 Hz band-
pass filters with specified numbers of weights. For a perfect 4-6.5 or

8-13 Hz filter (passing all 5- or 10-Hz activity and passing nothing %
else), the entry would be 17.678 pV. Tables entries near that asymptote i
(< 2% error) are in boldface. ' 5
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appears to be far short of asymptote. Even with 21
weights and the greater precision that an unequal-weight
filter allows, the RMS value was only 17%—-44% of the
correct value. It must be noted, of course, that no simu-
lation can be comprehensive. Whereas a span of half a
dozen cycles or more seems necessary in the four cases
evaluated here, that number could vary as a function of
the width of the filter pass band (the frequencies that the
filter should retain) relative to the bandwidth of the tar-
get signal and also as a function of the amplitude and fre-
quency of noise to be filtered out in the stop band. Ifany-
thing, however, the present noiseless simulations may
underestimate the appropriate number of weights. Mini-
mally, these empirical simulations suggest that the num-
ber of weights should be sufficient to span at least 5-10
cycles of prominent signals in the time series of data
being filtered.

Real-time filter weight density. These same simula-
tion data can address a second practical question. For the
filtering of a given time point and a given number of
weights, the number of signal cycles that the weight se-
ries spans is a function of the sampling frequency of the
raw data. For a fixed number of weights. increasing the
sample frequency reduces the real-time span of data in-
volved in the filtering of a given point. Does increasing
the sample frequency (and thus the density of the
weights in real time) have an impact on the performance
of the filter?

The results of the simulations presented in Table 1 can
be rearranged to address this question. Table 2 illustrates
five pairs of filters, each with a half-amplitude bandpass
of 8—13 Hz, applied to a simulated 10-Hz signal. The first
case compares the signal passed by a §1-weight filter ap-
plied to data sampled at 125 Hz to the signal passed by a
101-weight filter applied to the same data sampled at
250 Hz. The two filters span about the same amount of
real time (about four cycles), thus differing only in the
real-time density of the weights. The resulting RMS val-
ues differ by less than .3%. The other cases provide sim-
ilar comparisons for filters that span more data, with the
same result. The similarity of the two RMS values in

Table 2
Effect of Filter Weight Density
No. Milliseconds Cycles Sampling Frequency (Hz)
Weights Spanned Spanned 125 250
5t 408 4.08 14.933
101 404 4.04 14.985
63 504 5.04 16.269
125 500 5.00 16.335
125 1,600 10.00 17.743
251 1,004 10.04 17.741]
251 2,008 20.08 17.635
501 2,004 20.04 17.636
501 4,008 40.08 17.648
1,023 4,092 40.92 17.672

Note—Table entries are postfiltering RMS signal voltage in V" for an
input signal consisting of a 10-Hz pure sine wave with a peak-10-peak
amplitude of 50 gV, For a perfect 813 Hz filter (passing all 10-Hz ac-
tivity and showing nothing else), the entry would be 17.678 pV.
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each pair of rows does not vary as a function of how
close the RMS values are to asymptote, even though, as
in Table 1, the RMS values do approach asymptote as the
number of weights grows. In sum, weight density does
not affect the filtered representation of the signal.

The practical implication of Table 2 is that increasing
the sampling frequency and correspondingly the number
of weights per cycle does not improve filter accuracy. It
simply increases filter computation time. Ifavailable, extra
computation time should be spent on increasing the num-
ber of weights without changing the sampling frequency.
That will mean that more signal cycles are spanned, which
in Table 1 is established as beneficial. This conclusion is
consistent with the dictum that frequency resclution and
temporal resolution vary inversely——for better frequency
resolution, sacrifice temporal resolution by including a
greater span of real time (i.e., more cycles) in the filter
{Cook & Miller, 1992).

Impact of slow drift. For reasons to be reviewed
below in the discussion of frequency domain filtering, a
standard assumption is that frequency domain methods
are very vulnerable to nonsinusoidal changes during the
filtered epoch. We investigated the vulnerability of the
type of time domain filter emphasized here to a particu-
larly extreme version of that problem. To our pure 10-Hz
sine wave. we added a linear trend. simulating the slow
drift sometimes seen in EEG/ERP data, We employed a
number of different slopes, ranging from .5 to 250 uV/sec.
The composite waveform was sampled at 250 Hz and
submitted to 251- and 1,023-weight filters designed to
pass 8—13 Hz. The output of the 25 i-weight filter varied
less than 1% up to a trend of 125 uV/sec. At 250 pV/sec,
an unusually large drift for real data, the error was 1.4%.
The 1,023-weight filter showed no variability at all, per-
fectly matching the RMS alpha value obtained when no
trend was added. It is clear that, given enough weights,
low-frequency activity is fully attenuated, such that even
large amounts of slow drift have little or no effect on the
813 Hz filter output. Filters using fewer weights, typi-
cal in EEG/ERP research, would be far more vulnerable,
and this problem would be exacerbated in studies in
which researchers are interested in lower pass bands. Si-
mons, Miller, Weerts, and Lang {1982) developed a
method for dealing with the latter problem in long-inter-
val CNV studies that may be applicable to other low-fre-
quency measures.

DIGITAL FILTERING
IN THE FREQUENCY DOMAIN

Concepts and Terminology

Up to this point we have been concerned with data
represented and filtered in the time domain. The fre-
quency domain provides an alternative perspective on
digital filtering and frequency analysis that warrants
some discussion and comparison with the time domain
perspective. This alternative is of interest both as a dif-
ferent means of implementing a digital filter (in the fre-
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quency domain) and as a means of generating the weights
to be used in a digital filter in the time domain. Crucial
10 understanding how data collected in the time domain
might be filtered in the frequency domain is an under-
standing of how time series data can be converted to a
frequency domain representation.

The fast Fourier transform. In the substantial litera-
ture on frequency domain methods of data analysis in
general and digital filtering in particular, the community
of EEG/ERP researchers is probably most familiar with
the fast Fourier transform (FFT; Cooley & Tukey, 1965)
as a means of estimating the frequency composition of a
time series. Intensive treatments of the FFT are availavle
in numerous sources (e.g., Brigham, 1974; Glaser &
Ruchkin, 1976). Most relevant here is an intuitive un-
derstanding of what the FFT does, what some of its prac-
tical constraints are, how it can be used to accomplish fre-
quency filtering in the frequency domain, and how it can
be used to facilitate frequency filtering in the time domain.

Subject to certain constraints, Fourier’s theorem states
that any time series waveform may be modeled as the
sum of a set of sinusoidal waveforms, eachof a different
frequency and having an associated amplitude and phase.
Figure 3 provides an illustration of this summation ap-
proach. This principle is the basis of Fourier analysis,
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Figure 3. Illustration of the Fourier modeling of a square wave
via summation of sine waves of appropriate frequency, ampli-
tude, and phase. The square wave at the bottom is the average of
the five sine waves above it. Note that the sine waves are in phase
only at the half-cycle transitions of the square wave. Those syn-
chronized transitions are thus reflected in the approximate
square wave at the bottom. At all other times, the sine waves are
out of phase with each other and thus cancel out, providing the
plateaus of the square wave. Although this illustration employs
five sine waves, according to the Fourier theorem a complete
model would employ an infinite number of increasingly small-
amplitude sine waves, further sharpening the half-cycle transi-
tions and fattening the plateaus.

which yields an estimation of the amplitudes and phases

of the constituent sinusoids as a function of frequency.
This representation of a signal is said to be “in the fre-
quency domain.” A direct Fourier transform is an algo-
rithm that converts a digitally represented signal from
the time domain to the frequency domain; an inverse
Fourier transform converts the signal from frequency do-
main to time domain.>

Frequency filtering with the FFT. Some simple arith-
metic (see Cook & Miller, 1992) applied to a portion of
the output of the Fourier transform produces a series of
frequencies and amplitude (or, optionally, power) values
at those frequencies. Those frequencies are often re-
ferred to as frequency bins.4 The original time series of
data (such as the square wave in Figure 3) is thus tepre-
sented as a series of frequencies, each with a specific
amplitude appropriate for modeling that time series. At
this point, the investigator may pursue either of two
goals. If the goal of the filtering is simply to quantify the

amount of activity at certain frequencies, the investigator

sums or averages the activity in the bins that come closest
to spanning 813 Hz. The resulting score is analogous to
the procedure, presented above, of leaving the data in the
time domain, applying an FIR digital filter to the raw
time series, and computing an RMS score on the filtered
time series to quantifv the amount of activity in a partic-
ular frequency band. If instead the goal of the filtering is
to provide a filtered time series, the investigator can set
the activity in all frequency bins outside the desired pass
band to 0.0 and then perform an inverse Fourier trans-
form to reproduce the (now filtered) time series.

In summary, the time domain and frequency domain
approaches may be contrasted as follows. For time do-
main filtering, the investigator applies the filter to the

raw data, directly producing the filtered time series. 1f

frequency analysis is desired, an additional step is nec-
essary, such as an RMS computation. For frequency do-
main filtering, the Fourier transform of the raw data is
computed, the fiiter is applied (by zeroing unwanted fre-
quency bins), and the inverse Fourier transform is ap-
plied. If quantification of pass band activity is all that is
desired, the inverse Fourier transform step is omitted.

Some limitations of frequency domain filtering are
well established. It requires that filtering be delayed until
the full epoch to be filtered has been acquired. This may
present difficulties if filtered data are required in real

time. Another limitation is often imposed by the algo- ]

rithm used to compute the transform. Most typically,

some form of the FFT (for some variations, see Brigham, %
1974) is used to provide increased computational speed 3
in exchange for certain limitations (Dumermuth & Moli- &

nari, 1987). For example, the algorithm is usually ap- -
plicable only to a time series with exactly 2" members, °

where n is a positive integer. Despite these limitations,
frequency domain filtering with the FFT is a well-estab-
lished practice in the EEG/ERP literature. A third limi-
tation is that, if the signal is not stationary (i.e., does not

have consistent mean and frequency components) over g
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the epoch for which the Fourier transform is calculated,
artifactual high-frequency noise and discontinuities be-
tween adjacent epochs can result (Attinger, Anne, & Mc-
Donald, 1966; Cook & Miller, 1992).

Stationarity. It is commonly noted that real-world
psychophysiological data routinely violate the Fourier
method’s requirement of stationarity, but this issue has
not received extensive treatment in the EEG/ERP litera-
ture. The property of stationarity refers to complete con-
sistency over time of the constituent functions underly-
ing an observed time series. Since the Fourier approach
1o a time series of length 7 (in seconds) starts with a sine
wave of frequency 1/T (in cycles per second), the Fourier
modeling of the time series will work properly only
when the slowest frequency in the data is exactly 1/T.
Furthermore, ail other (faster) frequencies in the data
should be limited to the harmonics of 1/T; that is, 2/T,
3/T, and so on. Brigham (1974, chap. 6) and Glaser and
Ruchkin (1976, chap. 3) provided graphical illustrations
of the misallocation of frequency information, called
leakage, that occurs when nonharmonic frequencies are
present. Were the FFT applied to a time series of infinite
length, this leakage into inappropriate frequency bins
would not occur. This point can readily be understood in-
tuitively, in that as T approaches infinity, 1/7 approaches
0.0. As a result, the frequency resolution becomes ex-
tremely high, so that virtuaily any activity is close to a
harmonic. Very long analysis epochs are thus much less
vulnerable to leakage of nonharmonic activity.

On the other hand, long analysis epochs are vulnera-
ble to another violation of the stationarity assumption:
changes in the constituent frequencies over time. The
Fourier transform from the time to the frequency domain
produces a set of amplitude and phase values, one am-
plitude and one phase value for each harmonic. Because
the entire time series will be described by a (static) set of
frequencies of specified amplitude and phase, this ap-
proach cannot deal correctly with any change in the am-
plitude or phase of a given frequency during the Tepoch.
In that sense, the data must be “stationary” during the
epoch analyzed.

One way to deal with the stationarity assumption is to
break up a long time series into shorter epochs, on the as-
sumption that data wil] be more stable aver shorter peri-
ods. Thus, for example, a 60-sec time series might be an-
alyzed as sixty 1-sec epochs, rather than as a single 60-sec
epoch. This is a computationally demanding strategy, for
which the speed improvement of the FFT has proven very
important. We wish to draw attention to a newer method,
the fast Hartley transform (FHT; Bracewell, 1984; for a
very accessible introduction, see O'Neill, 1988), which
we believe would be superior in most EEG/ERP appli-
cations. Conceptually, the Hartley transform is closely
analogous to the Fourier transform. However, the FHT
algorithm relies solely on real arithmetic, unlike the tra-
ditional FFT, which involves complex arithmetic. O'Neill
discussed why the FHT takes half the time and half the
memory of the traditional FFT. Like the Cooley-Tukey
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FET method discussed above, the FHT requires that the
length of the time series be a power of 2.

Design of Time Domain Filters
in the Frequency Domain

With the preceding brief discussion of Fourier analy-
sis in mind, we can now examine one means of design-
ing the time domain digital filters discussed earlier in
this paper that will illustrate some aspects of the rela-
tionship between time domain and frequency domain
data representations and fiiter methods. The FIR filters
involve convolving a time series with a symmetric weight
series (which may itself be considered a time series),
yielding a filtered time series. Specific steps for con-
structing such filters (i.e., generating the weight series)
have been described by Gold and Rader (1969; see aiso
Ackroyd, 1973; Cook & Mitler, 1992; Dumermuth &
Molinari, 1987; Oppenheim & Schafer, 1975), and soft-
ware implementing the weight-generation process is
available (e.g., Cook, 1981). Briefly, the technique in-
volves four steps, summarized in Figure 4. First, the fil-
ter’s ideal, frequency domain gain function is specified
as an array of s and Os corresponding to the pass and
stop bands, respectively. Second, the inverse Fourier
transform is applied to this gain function to obtain its
time domain equivalent, which serves as the initial set of
filter weights. Following the principles of Fourier analy-
sis described above, these weights are by definition a
time series consisting of the sum of a set of sinusoids,
each corresponding to a different frequency in the pass
band of the ideal gain function. Although the process of
designing an FIR filter can stop after these two initial
steps, two further steps are often taken to improve and
evaluate the filter. The third step involves refining the
filter weight series by applying a window to it. Figure 4
illustrates three such windowing functions. Finally, the
windowed filter is evaluated: the direct Fourier trans-
form converts the windowed weight series back to the
frequency domain, which vields the actual gain function,
which can be evaluated in comparison with the ideal gain
function specified in Step 1. Steps 3 and 4 may be re-
peated with different parameters until a weight series is
obtained that has a gain function satisfactory for the
user’s application.

Although Cook and Miller (1992, Appendix B) de-
scribed these steps in greater detail, the windowing pro-
cess is so central to the filter generation process that it
deserves further comment here. In general, windowing
involves cross-multiplying a function with the original
filter weights, with the resuit being a filter that is nar-
rower (has fewer weights) and/or tapered at its ends.
Windows vary in their shape and width, and the choice
of a window involves balancing tradeoffs related to fil-
ter width, computation speed, transition bandwidth, and
gain function ripple (i.e., variation in the actual gain
function around 0.0 in the stop band and 1.0 in the pass
band). The simplest window function is rectangular, and
its effect is to truncate the weight series. Truncating the
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Figure 4. The four-step process of generating filter weights (see text). For illustration, an 8-13 Hz
bandpass filter is the stipulated goal. The obtained gain functions resulting from each of three win-

dowing functions are compared.

weight series directly reduces computation time. How-
ever, applying such a rectangular window also produces
rippie in the gain function, as is apparent in Figure 4.
Ripple can in turn be reduced by tapering the ends of the
truncated weight series, using one of several tapering
windows (Ackroyd, 1973). The Hamming window is rel-
atively gradual among the tapering functions illustrated
in Figure 4. For example, it reduces the weights by about
46% halfway from the center of the weight series to the
outermost weight. In general, applying a Hamming win-
dow reduces but does not eliminate truncation-related
ripple. However, it also widens the filter’s transition band,
making it less selective across the frequency spectrum.
Compared with the Hamming window, the Blackman
window is more severe {the corresponding reduction is
66% at the halfway point), and its effects are more ex-
treme. That is, it nearly eliminates gain function ripple
but further widens the gain function transition band.

Practical Considerations in Frequency Domair
Digital Filtering

Slow drift. The requirement for stationarity, the re-
quirement that all frequencies present in the time series
be limited to the harmonics of 1/7, and the typical avail-
abitity of analysis only of time series the lengths of
which are a power of 2 provide important practical con-
straints on the appropriateness of frequency domain
analysis. A particularly underappreciated aspect of these

constraints is the stationarity requirement in the face of
slow drift in the data.

The wide range of possible violations of stationarity
precludes a thorough empirical investigation of the con-

ditions under which such violations seriously distort =

one’s analysis. However, we used the simulated slow-
drift data discussed earlier to investigate the impact on
FHT output (see Glaser & Ruchkin, 1976, chap. 3, foran
analytic discussion of this point). As was the case with
the time domain filters with adequate numbers of
weights, FHT output was not seriously affected. Even
when we added a 250-1V/sec linear trend, FHT output in
the alpha band changed by less than .07% from the ideal
value. Of relevance in studies of P300, the 1-2 and 2-3 Hz
bins showed almost no effect. Virtually all of the activ-
ity contributed by the linear trend was confined to the
0-1 Hz bin. Thus, slow drift is likely to be problematic
only for investigators concerned about very slow activity.

quires continuous data, but real-world data epochs are
discontinuous, the ends of the epoch present a serious
problem. Unless the only signals present in the data are’

sinusoidal waves with periods of exactly 1/T and its har-

monics {7, again, being the length of the epoch), the data

value at the end of the epoch will not generally be that of )

Windowing. Because Fourier analysis in principle re-
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that resembles the positive half cycle of a sine wave. Un-
derstanding the relationship of this windowing of data, in
the context of frequency domain filtering, to the win-
dowing of weights discussed earlier, in the context of
time domain filtering, helps to clarify the relationship of
time and frequency domain filtering more generally. In
the case of time domain filtering, we window the weights,
in the time domain, and then we cross-multiply the
weights with the data. In the case of frequency domain
filtering, we window the data in the time domain, and
then we employ the FFT or FHT to convert the data to the
frequency domain. In both cases, the windowing is ap-
plied in the time domain. In fact, the same choices of
windowing functions are availabie for both uses. In both
the time domain and the FHT computations used for the
simulations that we report here, we employed the Ham-
ming window.

The role of windowing in time domain and frequency
domain approaches may be summarized and compared
as follows. The time domain approach cross-multiplies
three time series in the time domain: the windowing
function, the (unwindowed) weights (the inverse trans-
form of the desired gain function), and the original data.
The frequency domain approach cross-multiplies two
time series in the time domain: the windowing function
and the original data. Then, after this product is trans-
formed to the frequency domain, the frequency domain
approach does a third cross-multiplication, using the de-
sired gain function. The pragmatic point is that the in-
vestigator needs to choose a windowing function for use
with FFT or FHT analysis, just as was needed for use
with the time domain filtering discussed earlier.

Epech overlap. Although advisable in principle, this
tapering of data prior to FFT or FHT necessarily loses
information (because some data points receive weights
less than 1.0 in the tapering function). To compensate for
this problem, overlapping segments are commonly ana-
lyzed when multiple contiguous epochs are available.
For example, when one is processing a lengthy EEG epoch
1 sec at a time with 50% averlap, the first epoch to be an-
alyzed covers 0—1,000 msec, and the second epoch cov-
ers 500-1,500 msec. The weighting function would have
tapered (substantially underrepresented) the data from
roughly 800 to 1,000 msec in the 0-1,000 msec epoch,
but those data would pass through the tapering function
almost intact during analysis of the 500-1,500 msec
epoch.

There is no firm rule for how much overlap there should
be. but common amounts are 25%, 50%, and 75%.5
When one is using a pure sine wave as simulated data,
the choice of overlap should make no difference, pro-
vided that the epoch is long relative to the sine wave fre-
quency, because the same information is contained in any
epoch. In the present case, we applied the FHT to 1.024-
sec epochs (28 data points) of the 60-sec, 10-Hz sine
wave. As expected, overlaps of 0%, 25%, 50%, and 75%
made no difference, within rounding error, and they pro-
duced RMS values very close to those for the time do-
main filters with the most weights in Tables 1 and 2.
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One consequence of the overlap strategy can be noted.
The run time of a straightforward implementation of the
Fourier transform is proportional to N2, where N is the
number of data points in the time series analyzed. The
fast Fourier transform improves this to N » log, N. This
is an enormous improvement for large N. As noted ear-
lier, one option to reduce violation of the stationarity as-
sumption is to analyze long epochs as a series of short
epochs, such as a 60-sec time series analyzed via 60
FFTs of 1-sec epochs. This approach has the added ad-
vantage of requiring less total run time—43% less for a
60-sec time series. However, using a 50% overlap, 119
rather than sixty 1-sec analyses must be run, taking 14%
longer than a single 60-sec time series. Furthermore, be-
cause the frequency resolution of the FFT or FHT output
is 1/T, analyzing the longer epoch provides better fre-
quency resolution. Glaser and Ruchkin (1976) showed
that the frequency spectrum leakage discussed earlier af-
fects less of the frequency spectrum for small values of
1/T. Investigators must weigh these tradeoffs in selecting
epoch length. :

COMPARISON OF TIME AND FREQUENCY
DOMAIN DIGITAL FILTERING

The interchangeability of time domain and frequency
domain representations of a given waveform warrants
emphasis. Either description completely specifies the
raw phenomenon illustrated in the composite waveform.
One description may be more tractable for a particular
type of analysis or more intuitively appealing for a par-
ticular type of question, but exactly the same informa-
tion is available in the two representations. Given the
focus in this paper on filtering, the relevant implication
of this fundamental point is that equivalent filtering can
be accomplished in the time domain or in the frequency
domain. For at least some kinds of methods in each do-
main, there is a direct analogue in the other domain. An
example of this can be seen in the steps illustrated in Fig-
ure 4. We began with raw data collected in the time do-
main and with an ideal filter gain function specified in
the frequency domain. To generate the weights for a time
domain filter, we transformed the frequency domain
gain function into the time domain. Alternatively and
equivalently, however, we could transform the raw data
into the frequency domain and conduct the filtering
there, simply by cross-multiplying, frequency bin by fre-
quency bin, the frequency spectrum of the raw data with
the desired gain function. Various details, choices, and
tradeoffs are left out of this comparison for clarity, but
the point is that many time domain operations have fre-
quency domain analogues and vice versa. The investiga-
tor should choose a method based on familiarity, avail-
ability, speed, and so forth.

Of practical interest is how the accuracy and speed of
the time domain digital filtering method emphasized
earlier in this paper compare with those of the FHT. We
evaluated this empirically, finding both methods to be
highly accurate (given sufficient weights for the time do-
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Table 3 RMS values of 4.459,4.025, 4.293, and 4.290 pV. Thegs"
Time Domain Filtering of Real FEG four values are quite consistent, although increased over
No. Weights Filtercd RMS Value lap appears to be associated with more stable values.
21 7.071 Table 3 illustrates the results of similar analyses but o
31 4.600 using a time domain filter with varying numbers of
ph g'i?"‘J weights. As the number of weights increases from 51, g
101 3325 the RMS values grow toward that for the 1,023-weight 5%
125 1.538 filter. At 1,023 weights, the filtered RMS value (4.280) =X
175 3.795 is virtually identical to the values for the 50% (4.293)
251 3.982 and 75% (4.290) overlaps in the FHT analysis. ,
i 33; :"2;3 As illustrated above in the Etienne et al. (1990) exam- ‘
//’ ' ple and also in Figure 5, filters with fewer weights, in

Note--Table entrigs are postfiltering RMS signal voltage in pv foran

input signal consisting of real EEG sampled at 250 Hz. general, pass less of the activity in the pass band(s) and

more activity in the stop band(s). If the epoch to be fil-
tered contains considerable activity in frequencies adja-
main filter) and finding each method to be superior cent to the desired pass band, the computed (filtered) .
under some circumstances, depending on wradeoffs of ac-  RMS value may fluctuate substantially as a function of
curacy and speed. We employed two 60-sec data sets, ~what transition band activity is passed. Thus, the RMS
sampled at 250 Hz and filtered foran 813 Hz bandpass. values could vary greatly asa function of activity in other
The first was the same pure 10-Hz sine wave used in parts of the frequency spectrum. This fluctuation is ap- .
simulations reported above. The second was 2 sample of  parent for the filters in Table 3 with the fewest weights. =

actual EEG, to provide a comparison using a complex, The poor gain functions of those filters (see Figure 5)in-

real-world signal containing noise. dicates that a significant portion of the low frequencies i
in the data would be passed. With RMS values at 01 Hz ;

Filter Accuracy being substantially larger than those in the alpha band in

Choice of degree of overlap is potentially more ofan the data sample. the RMS values obtained by the putati{.'e l

issue with complex, nonstationary, real-world EEG/ERP “alpha” filters in Table 3 that have relatively few weights |
data. We used 60 sec of real EEG data recorded from fluctuated badly. ft should be noted that these filters nev-
F3-M1 and M2-M1 derivations (Intemational 10-20 ertheless have considerably more weights than do many ‘3
System; Jasper, 1958) and converted off lineto a linked usedinthe ERP literature, underscoring our earlier point
mastoids reference, corrected for EOG artifact (Gration  about the potential inadequacy of common time domain

et al., 1983; Miller et al., 1988), and analyzed in 1.024- digital filters. .
sec epochs. Each epoch was Hamming windowed. With The vulnerability of time domain filters with few g
the FHT, overlaps of 0%, 25%, 50%, and 75% produced weights is a function of the signal-to-noise ratio (pass-. ‘,;'

Amplitude Gain

—
30. 40.
Figure 5. Amplitude gain functions for several of the filters presented in Table 3. The dif- o

ferent line types illustrate filters differing in number of weights, The x-axis has been trun-
cated.at 40 Hz, to provide more visual resolution at lower frequencies. Note that the gain
function approximates the ideal of a square wave befter as the number of welghts increases.
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band activity/stop-band activity), the width of the pass
band (because narrow pass bands are approximated es-
pecially badly with few weights), and how close the lower
bound of the pass band is to 0 Hz (because a significant
dc level may be present, and filters with few weights may
pass much of that activity). In fact, no filter in Tabie 3
with fewer than 51 weights removed all of the 0-Hz ac-
tivity nor passed even half of the activity in the pass band.
The 51-weight filter eliminated over 99% of the 0-Hz ac-
tivity but passed no more than 54% of the activity at any
frequency within the 8-13 Hz pass band (see Figure 5).
Not until the 175-weight filter was 100% of the 10-11 Hz
activity passed (still, less than 100% of the 8-10 Hz and
11-13 Hz activity was passed). In summary, the FHT
was clearly superior to the shorter time domain filters in
representing the 10-Hz signal. With enough weights in the
time domain filter, the two methods converge—as they
should, given the equivalence of time domain and fre-
quency domain filtering methods discussed earlier.

Filter Speed

Aside from accuracy, the two kinds of methods may
differ in speed. An appeal of the FHT is its speed rela-
tive to that of typical FET implementations, but it is not
clear a priori how those frequency domain methods com-
pare with the speed of the time domain digital filter
method emphasized in this paper. For a given data sam-
ple, the run time of the time domain filter is directly pro-
portional to the number of weights. Table 1 illustrated
that that filter’s accuracy asymptoted when the number
of weights was sufficient to span several cycles of the
target signal. In contrast, the run time of the FHT is di-
rectly proportional to the degree of overlap of the win-
dowed epochs. Thus, because run times for the two
methods are sensitive to different parameters, no single,
general speed comparison is possible (see Ruchkin,
1988, for some general remarks on comparative speed).
However. if on the basis of Tables 1 and 3 we assume that
the 251-weight filter comes close enough to asymptotic
accuracy (asymptote reached for three of the four columns
in Table 1), and if we take 50% overlap of epochs to be
a middle-ground case for the FHT approach (50% is
commonly employed in EEG studies using the FFT), in
our various simulations we found that the FHT compu-
tation took about 60% as long as that of the time domain
filter.

Although such a difference in run time is not striking,
the advantage of the FHT could become significant, de-
pending on the size of the data set to be analyzed and the
computational facilities available. On the other hand,
typical applications of time domain filters often employ
far fewer weights than do most of the cases investigated
here. Filter speed would be substantially enhanced, al-
though in many cases filter accuracy would be signifi-
cantly reduced. In such cases, the time domain approach
could be considerably faster than the FHT and, therefore,
faster still than a standard FFT implementation. Fur-
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thermore, the time domain method is not confined to
epochs consisting of 27 samples.

1t should be noted that the FFT and FHT algorithms
were designed to minimize execution time. Conceivably,
a variety of optimizations could be developed for time
domain filters. The time domain method emphasized in
this paper was not developed with speed in mind, nor is
it thoroughly representative of the many other forms of
time domain filter methods. In either domain, it is some-
times possible to optimize a given methed for a highly
constrained problem on a particular computing platform.
For example, algorithms have been developed to gener-
ate efficient integer-oriented assembly language for a
specific-length FFT (¢.g., 256 points) fora specific com-
puter architecture or to remove the power-of-2 constraint
(Brigham, 1974). In summary, the implementation of a
particular filter on a particular platform may have much
more impact on computational speed than does the
choice of generic type of filter.

SUMMARY AND RECOMMENDATIONS

This paper has emphasized, first, that time domain
digital filters in various forms are pervasive in the
EEG/ERP literature, although the conceptual continuity
across specific examples is not always appreciated; sec-
ond, that time domain fiiters are robust to variations in
real-time filter weight density and slow drift but not to
variations in number of cycles spanned; and, finally, that
the FHT appears to be an underappreciated method which
is faster not only than the commonly used FFT but also
in some cases than time domain digital filtering. Such
generalizations must be offered cautiously, for there are
surely cases in which empirical conclusions might be dif-
ferent. Furthermore, the goals of digital signal process-
ing vary greatly across studies. For example, the FFT and
FHT have the advantage of providing a full-spectrum,
frequency domain characterization of the data, which is
more commonly of interest in EEG than in ERP studies.
Time domain filtering can readily be applied in real time,
and it preserves the data in their original form (more
suitable for conventional ERP component scoring), al-
though the output of frequency domain filtering can be
transformed back to the time domain as well.

Qur strongest recommendation is that investigators
evaluate the filters they plan to use before becoming
committed to them. This can be done empirically, with
simulations such as those undertaken for this paper, or
analytically, relying on evaluation of the gain function of
a given filter. As concluded above, the number of cycles
spanned deserves particular attention.

Second, we recommend that gain functions be de-
scribed more fully than is typical in published work. Al-
though inclusion of a figure providing the full gain func-
tion is generally unnecessary, investigators should report
more than the nominal cutoff frequency (which itself
should be specified as the haif-amplitude or the half-
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power frequency; see Cook & Miller, 1992). For exam-
ple, the gain function slope at the cutoff frequency and
in some cases the degree of ripple in the pass band and
stop band should be provided. Gains at specific frequen-

cies are sometimes important, such as alpha band arti-
fact in a P300 study involving single-trial scoring.

Third, we recommend that investigators pay as much
attention to the low end of the frequency spectrum as to
the high end. The need for a sampling frequency well
above twice the highest frequency in the raw data is gen-
erally understood. Investigators often implement some

sort of smoothing filter to minimize the resulting high-
frequency activity that is not of interest in the time series
1o be filtered. However, present simulations suggest that
time domain digital filters may need to span several cy-
cles of the slowest frequencies present in order for arti-
factual results to be avoided. The number of cycles needed
in order to reach asymptotic filter performance may be
highly dependent on the parameters of a given case, but
the general point is that frequency resolution will im-
prove when more weights are used.

Fourth, we share Farwell et al.s (1993) serious reser-
vations about boxcar filters. We recommend that their use
be confined to cases in which their appropriateness has
been clearly established. Their computational speed ad-
vantage rarely providesa compelling reason for their use.

We hope that the present discussion encourages appre-
ciation for and more systematic evaluation of time domain
and frequency domain approaches to digital filtering.
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NOTES * l

1. The methods discussed in this paper are applicable to data points é
arrayed in space as well as to those arrayed in time. Spatial frequency
analysis becomes more feasible as the number and spatial density of 5 |
electrode placements increases (see Srinivasan, Tucker, & Murias, T
1998}. The methods discussed in this article generally assume that the i

time series of data resulted from sampling at equal time intervals. Thus,
for a straightforward application of these methods to spatial ime-series %
data, electrodes would have 10 be equally spaced on the scalp. Further-
more, two- and three-dimensional extensions of such methods wouldbe
desirable. The methods discussed in this paper are also applicable be-  ~
yond EEG/ERP data, encompassing other psychophysiological mea- ﬁ
sures such as the electrogastrogra, the magnetoencephalogram. heart
rate, and hemodynamic imaging data. *
2. A sine wave signal can be completely characterized by three param-
elers; amplitude, frequency, and phase. The concept of phase can be read-
ily understood if one conceives of the time course af 2 cosine wave as ro-
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hase refers to where the cosine function is
Phase is commonly quantified in terms of
Y or in radians {of the 2x radians in a ¢ir-
=1(atx =0)issaidtobeat
cycle later, as it crosses 0 (at
at 90° (360/4) or w2 (2n/4) radians. One can
equivalently, around the circle.

Miller (1992) for discussion of the
irect and inverse Fourier transforms——that

tation arcund a circle. Thus, p
in its cycle at a given moment.
the 360° in a circle
wave starting at amplitude y
a phase angle of 0°
x = 1), the cosine wave is
follow this throughout the cycle of,

3. See Appendix A in
computational steps for the di
is, for shuttling between time and frequenc
See Makeig and Jung (1996) for a discussion
proaches to frequency decomposition in psyc
s the common term, it can

or 0 radians, One quarter

v domain representations.
of some nonsinuscidal ap-

4. Although bin i
that the amplitude value for a given
range of frequencies. For example,
quency resolution will be 1/T
say, the 8-Hz binas capturing a

be misleading. It implies
“hin" reflects all of the activity ina
in an FFT of a 1-sec epoch, the fre-
Hz. It is comrnon to misunderstand,
1l frequencies between 8 and 9 Hz or be-
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tween 8.5 and 9.5 Hz. In fact, however, it correctly represents activity
only at precisely 8 Hz. In this example, any activity that is not a har-
monic of 1 Hz—that has a frequency that is not an integer—is not ac-
curately represented by any “bin” and instead “leaks” into other “bins.”
This issue of harmonics and leakage is discussed later in this paper (see
also Glaser & Ruchkin, 1976).

5. As this paper went to press, it was pointed out that if a Hanning
window is used, then 50% epoch overlap provides uniform weighting
over time (i.¢., that the weights applied to each time point sum to 1.0),
whereas there is no ideal overlap for a Hamming window (James Long,
personal communication, July 25, 1997).

6. Software (based on Cook, 1981} available from E. W. Cook com-
putes and plots the gain function for any arbitrary set of weights used in
the kind of zero-phase-shift FIR filter emphasized in this papef, in-
cluding a boxcar filter. Alternatively, it computes weights for such fil-
ters on the basis of user-specified cutoff frequencies, sampling fre-
quency, and window type.



