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Eveni-related potentials (ERPs) and other time
series data pose difficult analytic problems be-
cause of inherent statistical dependencies between
data values at different time points and because
cach such value is often the result of 2 number of
overlapping influences. Principal component anal-
ysis (PCA), a multivariate statistical procedure
closely related to factor analysis, has become a
widely used technique for attempting 10 deal with
these problems (for reviews, see Glaser and
Ruchkin 1976; Donchin and Heffley 1978; Picton
and Stuss 1980).

PCA represents the ERP voltages at successive
time points as linear combinations of a new set of
variables termed principal components (PCs):

ViJ = W“PCU + wilPCZJ
+ . W PCq (i=1,N;j=17T) (1)

where V, is the ERP voltage at time j in wave form
i; PCy;, PC,,,...PCy; are PC ‘loadings’ represent-
ing the contribution of each PC to the voltage at
each time point; and W,;, W;,,... W,y are PC *scores’
representing the contribution of each PC to each
of the ERP wave forms. The PCs are orthogonal
(and hence statistically independent), so that mea-
sures on one PC are guaranteed to provide inde-
pendent information from measures on another. In
addition, each successive PC accounts for a maxi-
mal proportion of the original variance uncorre-
lated with preceding PCs. Thus, when the original

T‘—ﬂ—
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variables are correlated, only a small number of
PCs {many fewer than T) can account for a large
proportion of the original variance. For ERP data,
4—8 PCs can often account for more than 80% of
the total variance.

As typically employed in ERP experiments,
PCA is part of a 3-step data analysis strategy.
First, PCA is performed on the covariance, cross-
product, or correlation matrix of the original ERP
voltages. Second, the PCs are rotated using Vari-
max (Kaiser 1958) or related rotation criteria $o
that the wave shapes of the derived components
correspond more closely to those of hypothesized
ERP components. An additive model similar to
Eq. 1 also applies following rotation, but with the
PCs replaced by terms representing the rotated
components. Third, scores on the rotated PCs are
used 1o assess the statistical significance of experi-
mental treatments in analyses of variance
{ANOVAs) or other inferential statistics. Thus,
PCA is used both as a technique for component
identification (steps 1 and 2) and as a technique for
component measurement (step 3). The hope is that
the number and wave shapes of the rotated PCs
accurately reflect the number and wave shapes of
underlying ERP components and that the rotated
PC scores accurately reflect variations in magni-
tude of those components across subjects, elec-
trode locations and experimental conditions.

Although reservations about several aspects of
the PCA-Varimax-ANOVA strategy have been ex-
pressed (e.g., Donchin and Heffley 1978; Hunt
1979: Wastell 1979, 1981a, b; Wood 1979, Mc-
Carthy 1980; Rosler and Manzey 1981), it has

0163-559’7/84/“503.00 © 1984 Elsevier Scientific Publishers Ireland, Lid.
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played an increasingly important role in defining
and measuring ERP components, particularly in
cases of presumed component overlap (eg.,
Donchin et al. 1975; Ruchkin et al. 1980; Friedman
et al. 1981; Sutton and Ruchkin 1984). Because
the true component structure of the ERP data
typically analyzed by PCA is largely unknown, the
validity of the PCA-Varimax-ANOVA strategy
must be evaluated using simulated ERP data in
which the component structure is known and can
be systematically manipulated. In this paper we
report initial simulation studies which demonstrate
that PCA can incorrectly allocate variance across
components, resulting in large increases in the
probability of type 1 error in tests on PC scores.

Methods

Simulated ERP wave forms were constructed
from the three 6é4-point prototype components
shown in Fig. 1 (top). These components were not
intended to simulate any particular set of empin-
cal ERP results, but were designed to capture in a
general way some of the main features of the ERP
components discussed in recent experiments. An
initial period of 16 points with no systematic ERP
activity was followed by component 1 (12 points
in duration), component 2 (26 points in duration),
and component 3 (39 points in duration). Compo-
nent 1 reached its maximum and returned to zero
before components 2 and 3 began. The latter
components began simultaneously, with compo-
nent 2 reaching its maximum and returning to zero
before component 3 reached its maximum at the
end of the epoch. Components 1 and 2 were
half-period sine waves and component 3 was a
quarter-period sine wave of the durations given
above. Each had a maximum amplitude of 1.0 and
was tapered at the ends by a cosine function.

In each simulation, the 3 prototype components
were combined linearly to form 800 ERP wave
forms, corresponding to a 2 X 2 x 10 factorial re-
peated-measures design with 20 subjects. Such a
design might be used, for example, in an experi-
ment comparing ERPs for 2 levels of stimulus
intensity, 2 levels of stimulus probability, and 10
electrode locations, in each of 20 subjects. The 800
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ERP wave forms were constructed in the fo]lowing
manner. For each component, random weights for
each factor in the 3-way factorial design were
chosen independently from normal distributiong
with specified mean and standard deviation. In the
present simulations, only main effects of one ex.
perimental treatment were investigated; no 2- of
3-way interactions were studied. In simulationg
with no effect of experimental treatments, the dis-
tributions of random weights had means of 109
and standard deviations of 50, yielding composite
weight distributions with means and standard de-
viations which averaged 300 (3 X 100) and 86.6
(V3 x50%), respectively. Main effects were in-
troduced on one of the 2-level treatments by in-
creasing the mean of the random weight distribu-
tion for one level from 100 1o 200, keeping the
standard deviation constant at 50.

An additive noise term was chosen indepen-
dently for each of the 64 time points from a
normal distribution with zero mean and standard
deviation 2. The noise term introduced no covari-
ance between time points and typically accounted
for less than 0.5% of the total varance of the
simulated ERPs. Finally, the 3 prototype compo-
nents were multiplied by the corresponding 3 sets
of random weights and then summed together with
the randomn noise to yield the composite ERP
wave forms. These composite wave forms con-
stituted the raw data for each simulation.

Autocorrelated noise was not used in the pres-
ent simulations in order to investigate the PCA-
Varimax-ANOVA strategy under conditions rela-
tively favorable to its success. Some amount of
autocorrelated noise is likely to be present in most
ERP data despite signal averaging, and at adverse
signal-to-noise ratios such noise can significanily
influence the resulting component structure.

Twelve hundred such simulations were per-
formed, each consisting of the generation of an
independent set of 800 simulated ERP wave forms
as described above, followed by computation of
principal components, Varimax rotation and re-
peated-measures ANOVA. The first set of 400
simulations consisted of 100 with no main effect of
any experimental treatment, and 100 each with a
single main effect on components 1, 2 and 3,
respectively. The second set of 400 investigated
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MISALLOCATION OF VARIANCE BY PCA

systematic variations in the size of the experimen-
tal treatment effect, and the third set investigated
systematic variations in the number of subjects
employed in the 2x 2% 10 design. ERP wave
form simulations and data management were pef-
formed by special-purpose programs, PCAs and
Varimax rotations were performed by programs
which included subroutines from the EISPACK
system (Smith et al. 1974), and AMOVAs were
performed by BMDP2V (Dixon 1981).

Results

In order to yield an accurate reconstruction of
the original simulated components, the results of
the PCA-Varimax-ANOVA strategy must mect 2
criteria. First, the wave shapes of the rotated PC
Joadings must correspond closely to those of the
original prototype components. Second, the rotated
PC scores must be highly correlated with the origi-
nal random weights used to generate the simulated
ERP wave forms. Evidence bearing upon each of
these criteria is examined below.

At an even more fundamental level, the number
of PCs must correspond to the number of original
prototype components {cf., Douglas and Rogers
1983). in the present simulations, only the first 3
PCs were rotated in order to maximize the likeli-
hood of correspondence between the rotated PCs
and proiotype components. With the relatively
simple component structure employed, the com-
monly employed eigenvalue-equals-one criterion
{multiplied by the average variance of the original
variables) also yielded 3 components.

Correspondence between rotated PC loadings and
prototype components

Fig. 1 (center and bottom) presents the un-
rotated and rotated PC loadings from a repre-
sentative example of the 100 simulations involving
no experimental treatment effects. Note that the
unrotated PCs had non-zero loadings over sizable
regions of the sampling epoch and often contrib-
uted significantly to latency regions corresponding
{o more than one of the original prototypes. The
rotated PCs, in contrast, corresponded much more
closely to the wave shapes of the prototypes, hav-
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Fig. 1. Plots of prototype compoacnts (top), unrotated prin-
cipal component loadings (center), and rotated principal com-
ponent [oadings {(bottom) for a representative simulation hav-
ing no experimental treatment effect.

ing highly similar onsets, maxima and offsets. The
major differences between the rotated PCs and
prototypes were: (a) that rotated PC 3 rose more
slowly than prototype 3, being initially concave
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TABLE |

Proportion of variance accounted for by prototype components
and rotated PCs in a representative simulation having no
treatment effects.

C.C. WOOD, G. McCARTHY

TABLE 11

Product-moment correlations between rotated PC scores ang
original weights in a representative simulation having no trea|.
ment effects.

Component1  Component 2 Component 3

Prototypes 0.15 0.35 0.49
Rotated PCs  0.15 0.43 0.41

upward rather than concave downward; and (b)
that rotated PC 2 never returned fully 1o zero in
the later portion of the epoch. As shown in Table
I, these differences in wave shape were reflected in
shifts in the proportion of variance accounted for
by each component. Whereas component 2
accounted for 35% of the variance in the original
prototypes, it accounted for 43% of the variance in
the rotated PC solution. This 8% increase in vari-
ance attributed 1o component 2 by PCA was offset
by a corresponding 8% decrease in variance attrib-
uted to component 3, which accounted for 49% of
the original variance and 41% in the rotated PC
solution. Component 1, which did not overlap in
time with either of the other components, was
virtually identical in shape and accounted for the
same proportion of variance in both the original
ERP wave forms and the rolated PC solutions.

Although the rotated PC loadings and the pro-
portions of variance shown in Fig. 1 and Table I
reflect only one of the 1200 total simulations per-
formed, they are good representatives of the
remainder, Only minor variations in wave shape
and proportion of variance ( +2% per component)
were observed across the other simulations. The
data in Fig. 1 and Table I are also representative
of the loadings and proportions of variance for
simulations in which effects of experimental treat-
ments were introduced, the only differences being
the relative increase in variance for the component
affected by the experimental treatment.

Correspondence between rotated PC scores and
original weights

In order to provide accurate measures of the
original components: (a) the rotated PC scores for
each component should be highly and selectively
correlated with the original weights for the corre-

Rotated PC scores

Compo- Compo- Compo-
nent 1 nent 2 nent 3
.. Component 1 0.99 0.02 0.02
Orfgmal Component 2 0.02 0.98 0.20
weights
Component 3 0.02 0.20 .98

sponding component; and (b} the effects of experi-
mental treatments should be correctly represented
in ANOVAs on the rotated PC scores.

Table 11 presents correlations between each set
of rotated PC scores and each set of original
weights for the 3 components. Note first that the
correlations between PC scores and weights for
corresponding components (i.e., the diagonal ele-
ments in Table 1) were uniformly high, indicating
that the variations in each set of rotated PC scores
over subjects and experimental conditions closely
mirrored that of the original weights. The off-diag-
onal elements in Table II indicate low correlations
between weights and scores for component 1 and
those for each of the other two components. For
components 2 and 3. however, there were correla-
tions of 0.20 between rotated PC scores and origi-
nal weights for the other (i.e., incorrect) compo-
nent.

Although the misallocation of variance between
components 2 and 3 may seem relatively small
when expressed as a change in proportion of vari-
ance (8-10% of the total variance across the 1200
simulations) or as correlations between the rotated
PC scores and the weights for the incorrect origi-
nal component (r = 0.20), it had dramatic conse-
quences on the ANOVASs used to assess the effects
of experimental treatments. Table IIl compares
the results of ANOVAs on the original random
weights with ANOVAs on the rotated PC scores in
the 100 simulations with no treatment effect and
the 100 simulations each with treatment effects on
components 1, 2 and 3, respectively. Each pair of
entries in the table is the number of F ratios out of
100 in which the obtained P value was less than
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Number of F ratios with P < 0.05 out of 100 ANOVAs on original weights and rotated PC scores.

Component tested

Component ]

Component 2 Component 3

{weights /scores) (weights /scores) (weights /scores)
No main effect 5/4 3/2 6/7
Component 1 100100 5/4 5/6
Locus of
main effect Component 2 3/9 100,100 2/ "
Component 3 5/5 4/81* 100 /100

* Inflated type I efror in analyses on rotated PC scores.

0.05 for ANOVAs on the original weights and
rotated PC scores (left and right values in each
column, respectively). For cases in which there was
no treatment main effect, the values given in Table
11 provide estimates of the actual type I error at
the 5% level. Thus, when there was no main effect
on any component (Table 11, top row), the num-
ber of F ratios with P < 0.05 ranged from 2 10 7
out of 100, closely approximating the 5% type I
error rate.

When the treatment effect was introduced on
component 1, all 100 ANOVAs on the original
veights for component 1 and all 100 ANOVAs on
the rotated PC scores for component 1 were sig-
nificant at the 5% level, and the ANOVAs on the
weights and scores for components 2 and 3 ap-
proximated the nominal 5% type 1 error rate {Ta-
ble 111, second row). Thus, for component 1,
ANOVAs on the rotated PC scores provided as
accurate a test of expernimental treatments as
ANOVAs on the original weights.

However, when treatment effects were intro-
duced on components 2 and 3, there were large
increases in type 1 error in ANOVAs on rotated
PC scores for the other overlapping component.
With the treatment effect on component 2, all 100
ANOVAs on PC scores for component 2 were
significant at P < 0.05, but 71 of the 100 ANOVAs
on PC scores for component 3 were also signifi-
cant at that level, Similarly, with the treatment
effect on component 3 all 100 ANOVAs on com-
ponent 3 scores and 81 ANOVAs on component 2
scores were significant at P < 0.05. Thus, PCA’s
incorrect allocation of variance between compo-
nents 2 and 3 noted previously in analyses of

proportions of variance and PC score correlations
produced type I error rates that were inflated from
the nominal 5% level to actual levels of 70-80%.
A more complete illustration of the increased
type I error for ANOVAs on component 3 when
the treatment effect was on component 2 is pre-
sented in Fig. 2, which shows the complete P
distributions for the 100 ANOVAs on the original
weights and the rotated PC scores for component
3. In absence of any treatment effect, such distri-
butions should be rectangular with approximately
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5% of the ANOVAs occurring at each value of P.
The P distribution for component 3 weights closely
approximated that pattern, whereas the enure dis-
tribution for the component 3 PC scores was
shifted lefiward toward smaller P values, Thus, the
misallocation of variance influenced the entire P
distribution in subsequent ANOVAs.

As an initial exploration of the dependence of
the inflated type I error rates upon the size of the
simulated experimental treatment effects and upon
the number of subjects employed, 8 additional sets
of 100 simulations with treatment effects on com-
ponent 2 were performed, 4 of which manipulated
size of the treatment effect and 4 of which
manipulated number of subjects. Treatment effect
size was reduced from 100 to 75, 50, 25 and 10,
and N was reduced from 20 10 16, 12, 8 and 4,
respectively.

The results of the treatment effect manipula-
tions are shown in Fig. 3, in which the obtained
numbers of F ratios with P < 0.05 are shown for
ANOVAs on original weights and rotated PC
scores for components 2 and 3. Stated in terms of
the strength of association measure w? (e.g., Hays
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Fig. 3. Effects of manipulating the size of the treatment effect
introduced for component 2 on correct rejection rates for
ANOVAs on component 2 and for type 1 error rates for
ANOVAs on component 3. Number of Ps < 0.05 are plotied
against the size of the treatment effect in standard deviation
units of the composite random weight distribution for compo-
nent 2. The largest and smallest treatment effects (1.15 and 0.0
standard deviation units, respectively) correspond to the treat-
ment sizes of 100 and 0 shown in Table 111
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1963), these effect sizes ranged from less than 0.01
to a maximum of 0.23. Each point in the figure is
based on 100 sets of simulated data analyzed using
the PCA-Varimax-ANOVA strategy in the same
manner described above. Since the treatment ef-
fect was aiways introduced on component 2, the
values for component 2 in the figure represent the
probability of correctly rejecting the null hypothe-
sis at the 0.05 level for effects of different sizes.
The values for component 3 represent the proba-
bility of type I error in component 3 ANOVAs as
a function of effect size on component 2.

In analyses on the original weights (dotted lines),
the number of correct rejections in component 2
ANOVAs increased sharply as effect size increased
from zero, reaching 95% at an effect size of one-
third to one-half a standard devialion. ANOVAs
on component 3 weights approximated the 5%
nominal type I error rate regardless of effect size
on component 2. In analyses on the rotated PC
scores (solid lines), the number of correct rejec-
tions in component 2 ANOVASs closely paralleled
those for ANOVAs on the original weights, indi-
cating that the rotated PC scores for component 2
were as sensitive to treatment effects on that com-
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ponent as were the original weights. The type I
errors for ANOVAs on rotated PC scores for
component 3 began to increase above the nominal
5% level at effect sizes of approximately one-third
a standard deviation, reaching 71% at the largest
effect size studied.

The results of manipulating N are shown in Fig.
4, which compares type | error rates for ANOVAs
on the original random weights and the rotated PC
scores for component 3. For ANOVAs on the
random weights, type I error closely approximated
the 5% level and was essentially independent of N
over the range studied. In contrast, for ANOVASs
on rotated PC scores, type 1 error was propor-
lional to N, ranging from a minimum value of 11%
with N = 4 10 71% with N = 20.

To investigate whether the misallocation prob-
lem is due exclusively to the differences between
the rotated PC loadings and the original proto-
types or due in part to the computation of rotated
PC scores, we calculated for each of the simula-
tions described above another set of component
scores derived from the original prototypes instead

‘he rotated PC loadings. We shall refer to these

‘prototype scores’ to distinguish them both
from the original random weights and the rotated
PC scores. Unlike the random weights (which were
stipulated by the simulations), the prototype scores
were computed from the composite ERP wave
forms in a manner similar to the rotated PC
scores. The only difference was that the point-by-
point standard deviations of the weighted proto-
types were used as estimates of the component
wave shapes instead of the rotated PC loadings. In
other words, the weighted prototype wave forms
were substituted for the rotated PC loadings, and
the computations of component SCOTES and
ANOVAs were subsequently performed in an
identical manner to the original simulations. Thus,
this procedure asks whether the original prototype
components can be accurately measured in the
simulated ERP wave forms if the estimates of the
component wave shapes are more accurate than
those provided by the rotated PC loadings.

Fig. S (top) compares the wave shapes of the
rotated PC loadings from the condition with no
treatment effect (Fig. 1. top) with those of the
weighted prototypes as defined in the preceding
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Fig. 5. Top: comparison of rotated PC loadings (solid) with
weighted prototypes {dashed) calculated from the standard
deviations of the voltages at each time point. Botlom: compari-
son of component score coefficients derived from the rotated
PC scores (solid)} and the weighted prototypes (dashed) shown
in the top of the figure.

paragraph. Two main differences should be noted:
(a) the weighted prototype for component 2 is
narrower and returns to zero before the end of the
epoch; and (b) the shape of the rising portion of
rotated component 3 is distorted relative to the
corresponding weighted prototype. Fig. 5 (bottom)
plots the score coefficients corresponding to the
weighted prototypes and rotated PC scores in Fig.
5 (top). These coefficients are multiplied, point-
by-point, by the ERP wave forms and summed to
yield the component scores for each set of compo-
nents. Thus, they constitute filters through which
the ERP data are passed in order to obtain mea-
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surements of each component. Note that the major
differences between coefficients for the prototype
scores and rotated PCs again lie in portions of the
sampling epoch where the other component is
maximal,

The use of the prototype scores instead of the
rotated PC scores resulted in a marked improve-
ment in accuracy of estimating the original ran-
dom weights. In correlations between the proto-
type scores and random weights analogous to those
for the rotated PC scores shown in Table II, the
on-diagonal correlations between corresponding
components were all in excess of 0.9999, and the
off-diagonal (i.e., erroneous) correlations between
components 2 and 3 decreased to less than 0.04.
The ANOVAs on the prototype scores showed no
increase in type | error between components 2 and
3 when there were treatment effects on the other
component, When plotted as in Fig. 3, the number
of significant ANOVAs on the prototype scores
were identical, point-by-point, to the ANOVAs on
the original weights. Thus, it is the inaccurate
estimation of component wave shape by the rotated
PC loadings, not any inherent difficulty in the
calculation of component scores, which is respon-
sible for the misallocation of variance and for the
consequent increase in type 1 errors in ANOVAs
on rotated PC scores.

Discussion

The simulations reported here demonstrate that
the PCA-Varimax-ANOVA strategy can, under
conditions similar to those of empirical ERP
experiments, incorrectly allocate variance across
components, resulting in serious misinterpretation
of the effects of experimental treatments. This
problem requires carcful consideration in evaluat-
ing experimental reports involving the PCA-
Varimax-ANOVA strategy.

The need for systematic simulation studies of
the PCA-Varimax-ANOVA strategy has been rec-
ognized for some time, and limited simulation
studies have been reported by us and by others
(e.g.., Wood 1979; McCarthy 1980; Rosler and
Manzey 1981). Although the scope of the present
simulations far exceeds that of any available in the
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literature, it is nevertheless limited. Only one set of
simulated components, one experimental design,
one type of association matrix (variance-covari.
ance) and significant effects on one experimentg)
treatment were studied. We therefore believe that
it would be unwise to overgeneralize these resulig
or to view them as invalidating any particular ge;
of empirical conclusions based on the PCA-Varj.
max-ANOVA  strategy. Additional simulation
studies are needed to evaluate the magnitude of
the variance musallocation problem across sys.
tematic variations in the number, shape, overlap
and variance of simulated components. and in the
experimental design, simulated treatment effects
and specific form of PCA employed.

Although detailed conclusions about the nature
of the variance misallocation problem must awai
the results of such studies, a number of tentative
suggestions can be made at this point;

{1) The components for the present simulations
were designed so that there was considerable tem-
poral overlap between components 2 and 3 and no
overlap between component 1 and either of the
other two. The obtained variance misallocation
was limited to components 2 and 3, and compo-
nent 1 was well reconstructed both in terms of the
wave shape of rotated PC loadings and the corre:
lations and ANOVAs on rotated PC scores. Thus,
the amount and form of the overlap between com-
ponents may be expected to play an important
role in determining the magnitude of variance
misallocation. :

(2} The present simulations were based on PCAs .
of variance-covariance matrices because they are
probably the most common type of analysis used
for ERP data. However, PCAs performed on cor+
relation and cross-product matrices in a few
selected examples from those presented above
demonstrated variance misallocation of roughly
the same magnitude. None of the 3 main forms df’
association matrix used for PCAs appears to be mponer
immune from the variance misallocation problenk . ence

(3) The relationships between type 1 error and
the manipulations of treatment effect size and |
shown in Figs. 3 and 4 indicate that the magnitude: 0 the n
of the type I error covaries with the sensitivity {i-6% n tl
power) of the ANOVAs for detecting true treat . S, 1
ment effects in the data. That is, larger treatmenf Mitng ¢t
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effects and larger N’s produced both an increased
likelihood of detecting true treatment effects and
an increased likelihood of type 1 errors for tests on
components whose variance has been misallocated
by PCA. Decreasing the alpha level would de-
crease both the likelihood of type I error and the
likelihood of correct rejections.

(4) The type I error rate rose more slowly with
increasing treatment effect size than did the cor-
rect rejection rate (Fig. 3). Hence, at least for this
set of simulations, there was a range of treatment
effect sizes for which sensitivity to true effects was
retatively high and type 1 error rate was relatively
low (less than twice the nominal alpha level).
Whether such regions of acceptlable sensitivity to
true effects and relative insensitivity to type [ error
can be generalized to other components, designs
and patterns of treatment effect remains to be
determined.

(5) The increases in type | error demonstrated
by the present simulations occurred in ANOVAs
on components with no treatment effect when
there was a significant effect present on an over-
lapping component. Hunt (1979) and Wastell
(1981a) have suggested that ANOVAs on PC scores
are biased toward exaggerating the statistical sig-
nificance of true treatment effects because vari-
ance due to experimental treatments is used to
define the dimensions of measurement {i.e., the
component axes). Although the present simu-
lations were not designed to address this issue, the
manipulations of treatment effect size in Fig. 3
show littte evidence of such exaggeration. The
correct rejection rates for ANOVAs on component
2 PC scores were comparable to those for compo-
nent 2 weights for small treatment effects.

(6) The direction of the spurious mean dif-
ferences in ANOVAs on rotated PC scores varied
as a function of the locus of the true treatment
effect. When a treatment effect was introduced on
component 2, then the spuriously significant mean
differences for component 3 were in the opposite
direction to those on component 2. However, when
a treatment effect was introduced on component 3,
then the mean differences between treatment levels
were in the same direction for components 2 and
3. Thus, no generalizations should be drawn con-
cerning the relative directions of correctly detected
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and spurious treatment effects, The sizes of the
spuriously significant treatment effects tended to
be smaller than those of the correctly detected
effects, with the mean differences between treat-
ment levels for the latter roughly 20-25% those of
the former.

(7) Perhaps the most disturbing aspect of the
present result is the fact that type I error rates as
high as 81% were obtained with misallocation of as
little as 8-10% of the original variance, and with
rotated PCs whose wave shapes corresponded as
closely to those of the prototypes as do those in
Fig. 1. In preparation for these simulations, we
investigated a number of other sets of components,
some of which yielded considerably poorer solu-
tions than those in Fig. 1 in terms of number and
wave shape of derived components. Although this
paper has focused upon the existence and conse-
quences of variance misallocation in a case in
which the PCA solution appears intuitively good,
readers should not overlook the likelihood of con-
siderably poorer solutions with other sets of com-
ponents.

The fact that the principal (i.e., unrotated) com-
ponents of a given data set need not, of mathe-
matical necessity, accurately reconstruct the com-
ponent structure of the data has been emphasized
in introductory treatments of PCA (e.g., Harris
1975, pp. 162-163) as well as in the specific con-
text of PCAs of electrophysiological data (Van
Rotterdam 1970; Freeman 1979). Although PCs
have the important properties of being mathemati-
cally unique, orthogonal and accounting for a
maximal proportion of the original variance, they
need not correspond to the components which
generate the data in question. This point is clearly
illustrated by the unrotated PC loadings in the
present simulations (Fig. 1, center), which account
for over 99% of the original variance, but which
contribute significantly to segments of the sam-
pling epoch associated with more than one proto-
type. Such a result is common for unrotated PCs
of ERPs and other time series data and argues
against the recommendation of Rosler and Manzey
(1981) that unrotated PCs should be preferred to
rotated PCs in ERP analyses.

The use of Varimax and other rotation criteria
may be viewed as an attempt to trade the mathe-
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matical uniqueness and orthogonality of the initial
PC solution for an increased likelihood of ap-
proximating the wave shapes of the assumed un-
derlying components. Since the component struc-
ture of ERPs typically analyzed by the PC-Vari-
max-ANOVA strategy is unknown, investigators
have relied upon intuitive criteria, primarily the
similarity of rotated PC loadings to the wave
shapes of the presumed underlying ERP compo-
nents as evidence for the validity of the strategy.
Although rotated PC loadings appear to corre-
spond more closely to the hypothesized wave
shapes of many ERP components, there is again
no mathematical necessity that the rotated PCs
accurately correspond to the true component
structure of the data.

We have thus far considered the problem of
misallocation of variance exclusively from the per-
spective of PCA. However, it should be em-
phasized that unless the ERP voltage at a given
time point is due entirely o a single component (a
situation which, although possible, appears in-
creasingly unlikely for many ERP data of interest,
see McCailum and Curry 1979; Picton and Stuss
1980; Wood et al. 1984), then the problem of
correctly allocating ERP variance to overlapping
components must be faced by any technique for
component identification and measurement. Other
approaches to ERP analysis, measurement of peak
amplitudes and latencies for example, are no less
subject to the problem of component overlap than
PCA; they simply make it easier 10 ignore by not
representing it explicitly. Misallocation of variance
and misinterpretation of experimental effects are
Just as possible using such techniques as they are
with PCA.

Although PCA is capable of making misalloca-
tion errors of the sort demonstrated here, it does
have two advantages not shared by most other
ERP analysis techniques. First, PCA explicitly
acknowledges the possibility of component overlap
and provides a quantitative means for representing
it. Second, PCA’s representation of ERP data as
linear combinations of a set of underlying compo-
nents is consistent both with the principle of
superposition which governs potential fields in
volume conductors and with most investigators’
pretheoretical ideas about the composition of ERP
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data. These observations suggest that improve-
ments over PCA might be achieved by retaining
the fundamental linear model inherent in PCA but
substituting other estimates of the underlying com-
ponent wave forms, based either on theory (cf,
Freeman 1975, 1979) or alternative analytic tech-
niques, for the unrotated or rotated loadings that
PCA provides by solving the eigenvalue problem,

In conclusion, we believe that the present re-
sults demonstrate: (a) that the use of rotated or
unrotated PC loadings derived from PCA as estj-
mates of undertying ERP components can result in
misallocation of variance across components; (b)
that the use of PC scores 1o assess the effects of
experimental treatmenlts can result in serious mis-
interpretation of treatment effects; and (¢) that
such a possibility demands caution in relying
heavily or exclusively upon the PCA-Varimax-
ANOVA sirategy in analyzing ERP data. Compre-
hensive simulation studies are needed in which the
variance misallocation problem is investigated
across systematic variations in the simulated com-
ponents, experimental designs, treatment effects
and forms of PCA employed. Such simulations
will not only allow the extent of the misallocation
problem to be assessed across the range of data
likely to be encountered in ERP experiments, but
will also provide test cases for assessing alternative
techniques for component identification and mea-
surement.

Summary

Simulated event-related potential (ERP) com-
ponents were used to investigate the ability of
principal component analysis (PCA), Varimax
rotation and univariate analysis of variance
(ANOVA) to reconstruct component wave shapes,
to allocate variance correctiy across components,
and to identify the correct locus of simulated
experimental treatments. The simulated ERPs con-
sisted of 800 randomly weighted combinations of
three 64-point components, corresponding to 2
2 % 2 x 10 repeated-measures design with 20 sub-
jects. Covariance PCAs, Varimax rotations and
univariate ANOVAs were performed on each of
400 such simulations, 100 with no effect of any
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experimental treatment and 100 each with main
effects on each of the 3 components. Eight hundred
additional simulations were performed to investi-
gate the effects of systematic variations in the size
of the experimental treatments and the number of
subjects per experiment.

The wave shapes of the simulated components
were reconstructed reasonably well, although not
completely, by the rotated principal component
(PC) loadings. However, comparison of rotated PC
scores with the random weights used to generate
the simulated ERPs indicated that PCA incor-
rectly allocated variance across overlapping com-
ponents, producing dramatic increases in type 1
error (the largest in excess of 80%) for ANOVAs
on one component when the true treatment effect
was on another. Although these results should not
be overgeneralized, they clearly demonstrate that
the PCA-Varimax-ANOVA strategy can incor-
rectly distribute variance across components, re-
sulting in serious musinterpretation of treatment
effects. Additional simulation studies are needed
to determine the generality of the variance misal-
location problem; pending the outcome of such
studies, results obtained with the PCA-Varimax-
ANOVA strategy should be interpreted cautiously.

Résume

Analyse en composantes principales des potentiels
liés & l'événement; des études par simulation révélent
que des erreurs peuvent étre commises dans 'évalua-
tion de lu variance entre composantes

Les composantes simulées de potentiels liés 2
Févénement (PLE) ont été utilisées pour étudier
comment I'analyse en composantes principales
(ACP), la rotation Varimax et 'analyse univariée
de variance (ANOVA), permettent de reconstruire
les formes des composantes, d’attribuer correcte-
ment la variance entre composantes et d’identifier
le niveau exact des traitements expérimentaux si-
mulés. Les PLE simulés ont consisté en 800 combi-
naisons aléatoirement pondérées de 3 composantes
de 64 points, correspondants 4 un schéma de
2X 2 10 mesures répétées sur 20 sujets. Des
ACP de covariance, des rotations Varimax et des
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ANOVAs univariées ont été effectuées chaque fois
sur 400 simulations de ce type, 100 sans effet
d’aucun traitement expérimental et 100 avec pour
chacune des effets importants sur chacune des 3
composantes. 800 simulations supplémentaires ont
€té pratiquées pour rechercher les effets de varia-
tions systématiques de la dimension des traite-
ments expérimentaux et du nombre de sujets par
expeérience,

Les formes d’ondes des composantes simulées
ont €té correclement reconstituées, bien qu’incom-
plétement, par pondération de la composante
principale (CP) aprés rotation. Toutefois, la com-
paraison des performances de ia CP aprés rotation
avec des pondérations aléatoires utilisées pour la
genese des PLE simulés, indique que PACP attri-
bue incorrectement la variance entre composantes
qui se chevauchent, et entraine ainsi d’importantes
augmentations d’erreurs de type I (la plus grande
de 80% par excés) dans des ANOVAs sur une
composante, alors que le véritable effet du traite-
ment était d’affecter une autre composante. Bien
que ces résultats ne doivent pas étre généralisés
exagérément, ils démontrent clairement que la
stratégie ACP-Varimax-ANOVA peut distribuer
incorrectement la variance entre les composantes,
ceci vésultant en une interprétation gravement
faussée de I'effet des traitements. Des études com-
plémentaires avec simulation seront nécessaires
pour déterminer la généralité de ce probléme d’at-
tributions erronées de la variance; en fonction des
résultats de telles études, les résultats obtenus avec
la stratégie CP-Varimax-ANOVA devront étre in-
terprétés avec précaution.

We thank T. Allison, W.R. Goff. E. Heffley, D. Jennings,
and D. Ruchkir for helpful discussion of the issues addressed
in this paper.
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