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Methods for the quantification and statistical
testing of ERP differences across conditions

J. HOORMANN, M. FALKENSTEIN, P. SCHWARZENAU, and J. HOHNSBEIN
Universitiit Dortmund, Dorimund, Germany

Several standard methods, as well as a new method for the quantification of event-related poten-
tial (ERP) differences across conditions, are described. The standard methods are (1) peak analysis,
(2) the calculation of mean values, and {3) the calculation of difference waveshapes, The new
method, called window analysis, was designed to quantify and statistically test in a very simple way

any shape differences between two ERP curvesin ¢
are lacking in one or all conditions. The window an

ertain time intervals (windows)} when clear peaks
alysisisbasedon a conventional analysis of vari-

ance with sample time as an additional within-subjects factor. The significance of a shape difference

between the curves fora factor of interest can the

n be determined with an F'test for the interaction

of this factor with the factor time. The usefulness of the window analysis is demonstrated in an ex-

ample with real data.

STANDARD METHODS FOR ERP
COMPONENT QUANTIFICATION AND
THEIR PROBLEMS

The crucial task in event-related potential (ERPY) re-
search is the quantification, statistical testing, and inter-
pretation of ERP differences across conditions. Ideally,
the averaged ERP, as recorded from the scalp (surface
structure), consists of a series of peaks and troughs, which
can be labeled by their polarity (P for positive, N for neg-
ative) and sequence (N1, N2, P1, P2, etc.), typical la-
tency (P300, N400), or mean peak latency (N1 34, P230,
etc.). Such a simple structure allows a simple and straight-
forward quantification or characterization of the ERP by
measuring the latency and amplitude of these extrema
(peaks). The peaks are assumed to be generated by un-
derlying components (component structure).

Peak Amplitude Measures

The peak analysis is usually conducted in two steps:
First, for each peak a specific ERP segment has to be de-
termined (search window) in which the peak is assumed
to be located for each subject and each condition. One ap-
proach for determining search windows is to compute the
grand means of the ERPs (averages for one condition
across all subjects) and average the grand means across
all conditions. This overall mean ERP contains all elec-
troencephelographic (EEG) epochs and is an estimate for
the general component structure of the ERP across condi-
tions. In the case of large ERP differences across condi-
tions (e.g., for different stimulus modalities), separate

Correspondence concerning this article should be addressed to
M. Falkenstein, Tnstitut fir Arbeitsphysiologie an der Universitit Dort-
mund, Ardeystr. 67, D-44139 Dortmund, Germany (e-mail: falken-
slein@arb-phys.uni-donmund.de).

averages of grand means should be computed for sub-
samples of those conditions that yield a similar ERP
structure. ERP segments of certain width are now cen-
tered on each of the peaks in the overall mean ERP. The
width of these search windows should be chosen so as to
include all individual peaks of the same component
while excluding peaks of different, adjacent components
of the same polarity. We propose to choose the search
window width slightly larger than the width of the affii-
iated component in the overall mean ERP. The compo-
nent width can be defined, for example, as the time dis-
tance of its zero crossings. Search windows can also be
determined more analyticaily—for example, by using
sample-by-sample tests of the zero deviation of a curve.
However, in such multiple tests, the alpha level has to be
corrected, using the Bonferroni method (see, e.g., Bortz,
1985; Brown, Michels, & Winer, 1991). As a consequence
of correctioi, the use of many samples leads to an unac-
ceptable loss of test power, so only a few tests should be
performed. Hence, such an analytic approach could prefer-
ably be used for adjusting search window margins by
testing only few samples around the margins predeter-
mined by the described inspection of the overall mean
ERPs.

The second step is to search, for each subject and each
condition, for the peak within the affiliated search win-
dow. A peak can, for example, be defined as the largest
local extremum within the search window, provided that
the voltage differences to the adjacent peaks of opposite
polarity exceed some predefined criterion (Falkenstein,
Hohnsbein, & Hoormann, 1993; ‘Hail, Rappaport, Hop-
kins, & Griffin, 1973). The search can be done by hand as
well as by suitable programs (see, €.2., Daskalova, 1988).
After determination of the peaks, their latency and am-
plitude can be measured for all conditions. Figure 1 il-
lustrates the setting of a search window for an auditory
P2 component. The two thick lines show the grand aver-
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Figure 1. Example of the parametrization of an averaged ERP
under two different conditions (thick straight curves). KONV, late con-
tingent negative variation, a tonic component before stimulus onset
(S}.ltisquanﬁﬂedbyﬂnemeannmplimdeinanERPsepnentbeﬁn
S(horbomnllinssmeZNV).Nl,P’l,phadcmmponemswmhdh-
ﬂnctpaks.mpeakiuumhedhrmuehmbjectmdcondiﬂonin
ssumh“dndw(mamlm,thickverﬂullim)ﬂntbcentemdonﬂle
penkhhncyofﬂwﬂ(ﬂﬂnmﬂulﬂne)hﬂaemunﬂt?aawm
ditions (dashed line).

ages of the ERPs for two different conditions; the dashed
line is the mean of the grand averages across the two con-

ditions. The search window is centered at the peak of the .

P2 in the mean of the grand averages. and its boundaries
are set to +£100 msec from the center, which is slightly
larger than the width of the P2.

An important issue in amplitude measuring is the
question, in relation to which reference point or refer-
ence line should the amplitudes be measured? A com-
mon method is to measure the amplitude A of ceriain
component relative to the mean amplitude B of a (pre-
sumably neutral) baseline. The basic idea behind this ap-
proach is that all components are superposed (riding) on

the same common baseline. The problem with this ap-.

proach is twofold: First, the assumption that the under-
lying baseline is the same for all components is question-
able; second, it is often difficult to find such a neutral
baseline. In most reports, the mean value of a short ERP
segment before stimulus onset is chosen as the baseline.
However, this baseline is often influenced by the late
CNV (Walter, Cooper, Aldridge, McCallum, & Winter,
1964), which reflects the preparation for the present trial.
In such a case, the variation of A is confounded with a
possibly independent variation of B (Résler, 1979).
Hence, to avoid this influence, A and B should at firstbe
measured relative to technical zero, which is truly neu-
tral. After this, correlations should be computed be-
tween A and B for all conditions and subjects. Only in
the case of a significant positive correlation of A with B
can the affiliated ERP component or peak be indeed as-
sumed to ride on the baseline. In this case, A should be
measured relative to B by transforming A to A'=A-B.
Such significant positive correlations are often found for
earlier components (e.g., for the N100). If A and B show
no significant correlation, which is usually found for

jater ERP components, A and B vary independently, so
A should be measured relative to technical zero (Résler,
1979). However, there are also limitations to this ap-
proach. A correlation may be observed not because of
superposition, but because of a common influence—such
as arousal—on baseline, component amplitude, latency,
or all of these. For example, a high arousal could cause
a large late CNV (negative) and a large P300. We could
show (Falkenstein, Hohnsbein, & Hoormann, 1994b;
Hohnsbein, Falkenstein, & Hoormann, in press) that a
large late CNV appears to be associated with a short la-
tency of the late P3 subcomponent (P-CR), while the early .
P3 subcomponent (P-SR) remains stable. This leadsto a
larger superposition of both subcomponents and to a
seemingly larger P3 complex. In this case, the correlation
did not meet the sign criterion (the correlation was neg-
ative instead of positive), but, for a negative component
such as the N200, there would have been a positive cor-
relation, but one not caused by superposition.

Problems With Peak

A general problem with peak analysis in average
waveforms is that the components in the single epochs
underlying the average are usually affected by consider-

able latency jitter. Such jitter is caused by a variety of in- ¢ ‘

fluences, such as trial-by-trial fluctuations in arousal and
effort. The latency jitter is usually larger in later compo-
nents, such as the P3 compiex. Latency jitter in itself
smears the average component and makes peak detection ¥
difficult, so eventually noise peaks can be mistaken for
true peaks. Moreover, differences in latency jitter across
conditions smear the average components differentially,
seemingly indicating attenuation of the peak amplitude o
of the component in the condition with the larger latency .4
jitter. ‘
A common method for reducing latency jitter.and preg .
serving latency information is the Woody filter (Woody, -
1967). This procedure assumes a constant form of the
component(s) across single epochs. A segment of each
single epoch is crosscorrelated with a template {usually
a sine half wave or the respective segment of the average
ERP), which results in different lags for maximum cor-

relation for each epoch. The single epochs are then time- 3 3

shifted by the respective lags and averaged only after this
correction, This is aimed at compensating for the time
jitter. The procedure can be repeated by using the new
average as the new template. For complex structures,
such as the P3 complex (see Figure 2), the mean ampli-
tude computation is suboptimal. since any differential la-
tency information about the underlying components is §
lost in the mean values. Also, the Woody filter may be J
misleading, since the form of the complex is likely 104
change in each single epoch because of differential over=3
lap of the subcomponents. Hence, in this case, not only
the latency estimation by crosscorrelation is impaired, ;
but, more severely, the subcomponents are likely to be y
smeared together to one single peak. So the Woody fil-
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ter should be applied only if the segment of interest def-
initely contains no overlapping components. This pre-
condition, however, is rarely met.

Two more simple methods to reduce latency jitter are
(1} to train the subjects thoroughly and (2) to impose some
degree of time pressure (Falkenstein et al., 1993; Falken-

stein, Holiridbéin, & Hbormann, 1994a; 1994b; Hohns-

bein, Falkenstein, Hoormann, & Blanke, 1991). Both mea-
sures reduce vatiance in performance and. thereby, the
latency jitter of late components that are (at least par-
tially) time-locked to the response, such as the lateral-
ized readiness potential (LRP; cf. the contributions of
Eimer, 1998, and of Schwarzenau, Falkenstein, Hoor-
mann, & Hohnsbein, 1998) and the late P3 subcompo-
nent (P-CR; Falkenstein et al., 1994a).

A second problem with peak analysis, which has al-
ready been mentioned above, is that often the individual
ERP components are not aligned in a strict sequential
manner, but overiap to different degrees, often forming
one broad complex. This can cause plateau-like ERP
segments, which cannot be easily quantified by peak
analysis. Moreover, the form of the ERP segment may
change across conditions. In particular, certain compo-
nents may be only visible for one, but not for the other
condition. An example for a different component struc-
ture of the ERP is illustrated in Figure 2, which shows
ERPs from two-alternative choice reaction tasks for two

attention conditions (the paradigm is described in more
detail below). In one condition (solid line), no P2 is vis-
ible, and the P3 complex (the positive complex begin-
ning at about 300 msec) consists of a broad positivity
with flat falling slope. In the other condition {dotted
line), a clear P2 is visible, and the P3 complex is divided
into two parts, the first part being attenuated compared
to the first condition. So it is a problem to define ERP
parameters common to both conditions because of the
profound shape change of the ERP across conditions. A
method for quantifying such form differences will be
presented below.

One possibility for disentangling subcomponents is
given by the principal components analysis (PCA),
which is presented in detail by van Boxtel (1998). This
method, though, has some caveats and problems. One of
the main problems with PCA is that it has difficulties in
dealing with latency variations of components. For ex-
ample, Mdcks (1986) could demonstrate that a strong la-
tency variation of one single component Cresultedina
PCA solution with a basic component related to Cand a
fictitious secondary component related roughly to the
first derivative of C.

Mean Amplitude Measures
The preceding section has shown considerable prob-
lems with peak analysis in the case of component over-
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jap. Moreover, there is a variety of very slow ERP phe-
nomena, such as the readiness potential (Kornhuber &
Deecke, 1965) or the above mentioned CNV, which ex-
hibit no peak, so that peak analysis is not possible.

A standard method for dealing with plateau-like peaks,
form changes, and very siow ERP components is the
computation of the mean amplitude of the ERP within
the time segment of interest. Figure 1 illustrates how this
can be done for the late CNV by computing, for exam-
ple, the mean amplitude (offset of the two horizontal
lines) of the ERP segment of 100 msec before stimulus
onset for the two different conditions. Mean amplitude
measures are certainly the suitable method for tonic phe-
nomena such as the late CNV, which seems not to be
composed of subcomponents. A recent example of the
application of the mean amplitude analysis can be found
in Gratton, Corballis, and Jain (1997). The computation
of mean amplitudes also reduces the influence of latency
jitter and, consequently, peak amplitude fluctuations
across components, because the area and also the mean
amplitude across a fixed time segment remain rather
constant despite differential latency jitter. However, for
phasic components, the peak latency is lost in the mean
amplitudes.

Difference Amplitude Measures ‘

A straightforward and very simple method for high-
lighting subcomponents is the calculation of difference
waveshapes (DIFs). DIFs suppress ERP activity that is
constant across two conditions, electrodes, or both. DIFs
between conditions have been used extensively by atten-
tion researchers (e.g., Hansen & Hillyard, 1980) to high-
light attention-related compenents. The above men-
tioned LRP is also calculated as the difference between
the activity at two lateralized electrodes, whereby activ-
ity common to both electrodes (mainly activity that is
not movement related) is suppressed. Falkenstein et al.
{1694b) could not only demonstrate that the P3 complex
consists of two subcomponents, but also, by using DIFs,
that the 1ater of these subcomponents (P-CR) is preceded
by a negative wave (N-CR), which is only seen indirectly
in the raw ERPs. One assumption, however, that has to
be met when calcutating DIFs is the invariance of the
common activity across conditions, which is difficult to
prove. Also, DIFs can sometimes produce artificial peaks,
which are merely due to time shifts of the underlying
components across conditions. We used the basic idea of
the DIF approach-—namely, to highlight differences across
conditions— as a simple method by which to quantify
and statistically test form differences between ERP
curves in certain time intervals (windows) when clear
peaks are lacking in one of all conditions, as shown in
Figure 2. The new approach (called window analysis)
does not necessarily assume that components underlie
the form differences. It only attempts to verify statisti-
cally whether ERP curves differ significantly across con-
ditions in certain time windows.

WINDOW ANALYSIS

Assuming an ERP interval of fixed length (1, ..., k)
denote the equidistant sample points within the interval 3
under two different conditions C (1,2)forS(1,..., Dsub- 3
jects. Let y(t, ¢, 5) denote the ERP amplitude at sample
point t, in condition ¢, for subject s. Can y(t, ¢, 5) be dis- &
tributed normally? The question of interest is whether
the two ERP intervals differ statistically between thetwo =
conditions. The straightforward solution to this question
yields an analysis of variance (ANOVA) with the within- gl
subjects factor condition (C) and an additional within- §
subjects factor time (T). A significant main effect of T 4
would simply reflect the fact that the time course of the
mean ERP deviates significantly from zero. A signifi-
cant main effect of C would reflect a difference in the 3
mean amplitude in the window across conditions—that 38
is, the two curves were significantly shifted against each S
other on average. One could get this result also by a
mean values analysis, as described above. More interest- "
ingly, a significant interaction C X T would indicate that g
the two curves have a different time course, independent
of a difference of the mean amplitude in the window. In
the case of a significani interaction C X T, simple effects
may be used to test the significapce of the curve differ- 3
ence at prespecified sample points. Suich points of fax- "4
imum difference can be chosen a priori by inspection of
the grand means, As already mentioned above, the alpha
levels have to be Bonferroni-corrected in multiple com- £
parisons, which leads to a strong decrease of the test
power. Hence, the test of many sample points is not ad- 4
visable. The location and size of the window is usually -3
determined after visual inspection of the grand means. It
is also possible to determine the exact window size that
is most sensitive for the detection of the form difference
with the aid of the ANOVA. To that end, the length and
the location of the interval can be varied to determine the -
particular interval that yields the highest significance for
the interaction. To reduce computation time, the distance
between the sample points should be in the range of 10
to 20 msec. Since the factor T contains multiple levels,
and the mutual correlation across these levels of T differs
strongly (adjacent sample points correlate higher thando -
distant points), one of the essential preconditions of )
ANOVA, the circularity assumption (see, €.g., Bortz,
1985; Brown et al., 1991), i clearly violated. Hence itis
absolutely necessary to correct the degrees of freedom 3 -
for the ANOVA by using the conservative Greenhouse-"%
Geisser procedure (Geisser & Greenhouse, 1958), which™#
is, for example, implemented in the 4V program of BMDP. 4

A caveat for the method is that interactions are some-3
times misleading and difficult to interpret. This is due Ty
the fact that the ANOVA is based on an additive model, -
whereas the components are multiplicative in nature -
(McCarthy & Wood, 1983). For example, a doubling of ﬁ '
strength of a component generator leads 1o a doubling of g
amphtudes at each sample point of that component. This_,
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results not only in a main effect, but usually also in an in-
teraction, because the additive enhancement of the com-
ponent is larger at the peak than at the flanks. In such
cases, it would be misleading to interpret the significant
interaction as a difference in waveshape, because the real
reason for this difference is obviously an enhancement in
generator strength. The ordinary way to compensate for
such multiplicativity effects is the normalization of the
data for the condition in question—that is, for each level
of the condition, each sample point is divided by the
mean value for this level within the window. This sets
the main effect of the condition to zero and thereby ¢lim-
inates the significance of form differences that are due
solely to multiplicative effects. In any case, a window
analysis would not be used, when a single component is
seen with clear peaks in two conditions; instead, a peak
or mean value analysis, as described above, should be
appropriate.

A related (but different) technique to deal with multi-
plicativity has recently been described by Tucker, Liotti,
Potts, Russell, & Posner (1994).

EXAMPLE WITH REAL DATA

In the following example, an application of the method
is shown. Visual and auditory letter stimuli (F or J) were
presented in a train (ISI about 1,750 msec); the occur-
rence of Js and Fs was equiprobable. In different blocks,
the stimuli were presented either visually (focused atten-
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tion [FA), visual) or auditorily (focused attention {FA],
auditory), or the stimulus modality was randomized
within the block (divided attention [DA]; Hohnsbein
et al., 1991). Nine subjects performed speeded binary
choice reactions with the right and the left index fingers
to one letter each (J and F, respectively). The EEG was
measured at four midline electrodes—Fz, Cz, Pz, Oz—
and sampled with a rate of 200 Hz. The ERPs of the cor-
rect trials were averaged with letter onset as trigger. The
number of trials was virtually the same for both attention
conditions. Figure 2 exhibits the grand mean (across all
subjects) of the ERPs after auditory stimuli for the two
conditions, FA and DA, at the vertex electrode Cz.

The grand means first show an N1 peaking around
140 msec. Subsequently, a P2, peaking around 220 msec,
and a later N2, peaking around 280 msec, are visible for
the DA condition, whereas the FA condition shows no
discernible peaks. After the N2, a late positive complex
(P3 complex) emerges, which has a quite different shape
in the two conditions. Hence, there are clear form differ-
ences in the regions of the P2/N2 and the P3 complexes
across conditions in the grand means. In Figure 3, the in-
dividua! ERPs are given for both conditions. The form
differences as seen in Figure 2 are present for most, but
not for all subjects. . .

The grarid mean structure suggests the choice of three "
different windows, which are (arbitrarily) centered on the
regions of interest: Window 1 (0-180 msec) contains the
N1, Window 2 (200-320 msec) is centered on the inter-
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Figure 3. Individual ERPs for all 9 subjects in focused attention (solid lines) and divided attention (dotted lines)

conditions.
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TFable 1
leuofﬂ:eTwWwRepaudeANOVAWﬂ
the Factors C((FA, DA) and T
p value

Effect Window 1 Window 2 Window 3
T 0167 0181 0000
C 0176 9552 09
CxT . 2822 0000 0117

Note—The degrees of freedom have been corrected after Geisser and
Greenhouse (1958).

section of the curves of the FA and DA conditions and
contains the P2 and the N2, and Window 3 (320750 msec)
contains the P3 complex.

To reduce the levels of the factor T, only every second
sample was used, which results in a sampling rate of
100 Hz.

Table 1 shows the results of an ANOVA (BMDP4V;
Dixon, 1990) with the two within-subjects factors C(FA,
DA)and T(1, ..., N}, with ¥ = 19 for Window 1, N=13
for Window 2, and N = 44 for Window 3. The significant
main effect C in Window 1 shows that the curves are
shifted against each other by a certain voltage. (Further
analysis—that is, a correlation with the baseline—re-

vealed that this difference-was due to an amplitude shift -

of the late CNV across conditions, while the N1 was con-
stant.) Significant interactions C X T are found in Win-
dows 2 and 3. This shows that the form differences in the
grand means in these windows are significant. There was
also a slight trend for a main effect C in Window 3,
whereas in Window 2 there was no significant main ef-
fect at all, When the data in Window 3 were normalized
in order to remove the trend of the main effect,the CX T
interaction remained significant. So it appears that the
form differences of the curves in Windows 2 and 3 were

not caused by multiplicative effects—for ‘exampls; by. -

enhancement of one component within the windows.

The result of the window analysis is dependent on the
location and the size of the window. Table 2 shows how
the level of significance decreases with a stepwise nar-
rowing of Window 2. However, even with a 20-msec win-
dow around 260 msec a significant interaction is ob-
tained, showing that the focus of the curve difference is
centered on 260 msec, where the ERPs intersect in the
grand means,

Table 2
ChangeofﬂreSlgnlﬂuneelﬂdofﬂqu T Interaction in
WlnﬁuwZWhenthe\VlndWSheisChnngd

Beginning of the End of the p value of € X T Interaction

Window {msec) Window (msec) Raw Bonferroni
200 320 .0000 0001
210 310 0000 0001
220 300 .0001 0006
230 290 0005 0030
240 280 0025 0149
250 270 0068 0401

Note—The p values have also been corrected after Bonferroni (s = 6)
for multiple comparisons (last column).
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: plication of the window analysis with real data showed & i 4

Furthermore, two simple effects were computed in order
to test the curve differences at the two sample points that
correspond to the P2 and N2 peaks in the grand means ..
(Figure 2)—namely, at 220 and 290 msec. At both sam-
ple points, the simple effects showed only tendencies
(220 msec, .0703; 290 msec, .0602), which vanished after
Bonferroni correction. This shows that the window analy-
sis is superior to single sample analyses for determining
curve differences.

SUMMARY AND CONCLUSION

One of the main tasks in ERP research is the quantifi-
cation, statisticat testing, and interpretation of ERP dif-
ferences across conditions. If clear peaks are discernible
in the averaged ERPs, a simple quantification can be
conducted by determining the peaks and measuring their
latency and amplitude. However, in cases of tonic com-
ponents or component overlap, this method fails. The
amplitude (but not the latency) of tonic components can ’
be assessed by calculating the mean amplitude in an ERP }
segment of interest (window). In the case of overlapping
components, difference waveshapes between conditions
can be used to suppress ERP contributions that are com-
mon to both conditions. The idea of the difference ap- _
proach was used to design a very simple method for sta- 4
tistically testing ERP differences of any kind between
conditions—especially form differences, which are often
not detectable by the analysis of mean values. This ap-
proach, called window analysis, simply uses sample time ‘
(T) as an additional within-subjects factor in the ANOVA. }
Hence, the approach requires no sophisticated data trans-
formations, but simply uses all sampled ERP data for the -~
ANOVA. The significance of form differences is tested
by the interaction of 7 with the condition factor. The ap-

high degree of sensitivity of the method for the detection .
of curve differences, even in small ERP segments. The
window analysis can also be used to specify points of
maximum difference across conditions. In summary, the
window analysis may be helpful to test whether ERP seg-
ments without consistent peaks are statistically different
across conditions. -
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